The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168061 Denominator of (n+3) / ((n+2) * (n+1) * n). 2
 3, 24, 10, 120, 105, 112, 252, 720, 165, 1320, 858, 728, 1365, 3360, 680, 4896, 2907, 2280, 3990, 9240, 1771, 12144, 6900, 5200, 8775, 19656, 3654, 24360, 13485, 9920, 16368, 35904, 6545, 42840, 23310, 16872, 27417, 59280, 10660, 68880, 37023, 26488, 42570 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numerator of ((n+3)/(n+2)/(n+1)/n) = A060789(n). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,4,0,0,0,0,0,-6,0,0,0,0,0,4,0,0,0,0,0,-1). FORMULA a(n) = 4*a(n-6) -6*a(n-12) +4*a(n-18) -a(n-24) = A007531(n+2)/A089145(n). - R. J. Mathar, Nov 18 2009 G.f.: x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4). - Colin Barker, Feb 04 2018 MAPLE seq(denom((n+3)/(n+2)/(n+1)/n), n=1..10^3); # Muniru A Asiru, Feb 04 2018 MATHEMATICA Table[Denominator[(n+3)/(n+2)/(n+1)/n], {n, 60}] LinearRecurrence[{0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -1}, {3, 24, 10, 120, 105, 112, 252, 720, 165, 1320, 858, 728, 1365, 3360, 680, 4896, 2907, 2280, 3990, 9240, 1771, 12144, 6900, 5200}, 50] (* Harvey P. Dale, Apr 06 2017 *) PROG (PARI) vector(50, n, denominator(((n+3)/(n+2)/(n+1)/n))) \\ Colin Barker, Feb 04 2018 (PARI) Vec(x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4) + O(x^60)) \\ Colin Barker, Feb 04 2018 (GAP) List([1..10^3], n->DenominatorRat((n+3)/(n+2)/(n+1)/n)); # Muniru A Asiru, Feb 04 2018 CROSSREFS Cf. A060789. Sequence in context: A062834 A047980 A084702 * A261381 A065430 A175471 Adjacent sequences:  A168058 A168059 A168060 * A168062 A168063 A168064 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Nov 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:30 EST 2020. Contains 338939 sequences. (Running on oeis4.)