login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168061
Denominator of (n+3) / ((n+2) * (n+1) * n).
2
3, 24, 10, 120, 105, 112, 252, 720, 165, 1320, 858, 728, 1365, 3360, 680, 4896, 2907, 2280, 3990, 9240, 1771, 12144, 6900, 5200, 8775, 19656, 3654, 24360, 13485, 9920, 16368, 35904, 6545, 42840, 23310, 16872, 27417, 59280, 10660, 68880, 37023, 26488, 42570
OFFSET
1,1
COMMENTS
Numerator of ((n+3)/(n+2)/(n+1)/n) = A060789(n).
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,4,0,0,0,0,0,-6,0,0,0,0,0,4,0,0,0,0,0,-1).
FORMULA
a(n) = 4*a(n-6) -6*a(n-12) +4*a(n-18) -a(n-24) = A007531(n+2)/A089145(n). - R. J. Mathar, Nov 18 2009
G.f.: x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4). - Colin Barker, Feb 04 2018
MAPLE
seq(denom((n+3)/(n+2)/(n+1)/n), n=1..10^3); # Muniru A Asiru, Feb 04 2018
MATHEMATICA
Table[Denominator[(n+3)/(n+2)/(n+1)/n], {n, 60}]
LinearRecurrence[{0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -1}, {3, 24, 10, 120, 105, 112, 252, 720, 165, 1320, 858, 728, 1365, 3360, 680, 4896, 2907, 2280, 3990, 9240, 1771, 12144, 6900, 5200}, 50] (* Harvey P. Dale, Apr 06 2017 *)
PROG
(PARI) vector(50, n, denominator(((n+3)/(n+2)/(n+1)/n))) \\ Colin Barker, Feb 04 2018
(PARI) Vec(x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4) + O(x^60)) \\ Colin Barker, Feb 04 2018
(GAP) List([1..10^3], n->DenominatorRat((n+3)/(n+2)/(n+1)/n)); # Muniru A Asiru, Feb 04 2018
CROSSREFS
Cf. A060789.
Sequence in context: A047980 A084702 A367190 * A261381 A365971 A065430
KEYWORD
nonn,easy
AUTHOR
STATUS
approved