login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A365971
Expansion of e.g.f. exp( Sum_{k>=0} x^(3*k+2) / (3*k+2) ).
1
1, 0, 1, 0, 3, 24, 15, 504, 5145, 9072, 300321, 3795120, 12284811, 441965160, 6672128463, 33017539464, 1306646813745, 22946632267104, 156924556846785, 6810382180903392, 136393286581031571, 1209571612450077240, 57211108821810731151, 1286884543482633415320
OFFSET
0,5
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-2)/3)} a(n-3*k-2)/(n-3*k-2)!.
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 + x + x^2)^(1/6) / (E^(ArcTan[Sqrt[3]*x/(2 + x)]/Sqrt[3]) * (1-x)^(1/3)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 30 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\3, x^(3*k+2)/(3*k+2)))))
CROSSREFS
Cf. A365978.
Sequence in context: A367190 A168061 A261381 * A065430 A175471 A035409
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 23 2023
STATUS
approved