login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of (n+3) / ((n+2) * (n+1) * n).
2

%I #18 Feb 04 2018 12:36:46

%S 3,24,10,120,105,112,252,720,165,1320,858,728,1365,3360,680,4896,2907,

%T 2280,3990,9240,1771,12144,6900,5200,8775,19656,3654,24360,13485,9920,

%U 16368,35904,6545,42840,23310,16872,27417,59280,10660,68880,37023,26488,42570

%N Denominator of (n+3) / ((n+2) * (n+1) * n).

%C Numerator of ((n+3)/(n+2)/(n+1)/n) = A060789(n).

%H G. C. Greubel, <a href="/A168061/b168061.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,4,0,0,0,0,0,-6,0,0,0,0,0,4,0,0,0,0,0,-1).

%F a(n) = 4*a(n-6) -6*a(n-12) +4*a(n-18) -a(n-24) = A007531(n+2)/A089145(n). - _R. J. Mathar_, Nov 18 2009

%F G.f.: x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4). - _Colin Barker_, Feb 04 2018

%p seq(denom((n+3)/(n+2)/(n+1)/n), n=1..10^3); # _Muniru A Asiru_, Feb 04 2018

%t Table[Denominator[(n+3)/(n+2)/(n+1)/n],{n,60}]

%t LinearRecurrence[{0,0,0,0,0,4,0,0,0,0,0,-6,0,0,0,0,0,4,0,0,0,0,0,-1},{3,24,10,120,105,112,252,720,165,1320,858,728,1365,3360,680,4896,2907,2280,3990,9240,1771,12144,6900,5200},50] (* _Harvey P. Dale_, Apr 06 2017 *)

%o (PARI) vector(50, n, denominator(((n+3)/(n+2)/(n+1)/n))) \\ _Colin Barker_, Feb 04 2018

%o (PARI) Vec(x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4) + O(x^60)) \\ _Colin Barker_, Feb 04 2018

%o (GAP) List([1..10^3],n->DenominatorRat((n+3)/(n+2)/(n+1)/n)); # _Muniru A Asiru_, Feb 04 2018

%Y Cf. A060789.

%K nonn,easy

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Nov 17 2009