login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367119
Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of edges in the resulting planar graph.
7
3, 24, 153, 588, 1635, 3708, 7329, 13128, 21843, 34320, 51513, 74484, 104403, 142548, 190305, 249168, 320739, 406728, 508953, 629340, 769923, 932844, 1120353, 1334808, 1578675, 1854528, 2165049, 2513028, 2901363, 3333060, 3811233, 4339104, 4920003, 5557368, 6254745, 7015788
OFFSET
0,1
COMMENTS
"In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet.
See A367117 and A367118 for images of the triangle.
FORMULA
Conjecture: a(n) = (3/2)*(3*n^4 + 4*n^3 + 3*n^2 + 4*n + 2).
a(n) = A367117 (n) + A367118 (n) - 1 by Euler's formula.
CROSSREFS
Cf. A367117 (vertices), A367118 (regions), A091908, A092098, A331782, A366932.
If the boundary points are equally spaced, we get A274585, A092866, A274586, A092867. - N. J. A. Sloane, Nov 09 2023
Sequence in context: A043017 A003443 A119581 * A240916 A006292 A067370
KEYWORD
nonn
AUTHOR
STATUS
approved