login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367120
Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).
1
2, 2, 2, 4, 4, 1, 2, 4, 3, 7, 9, 5, 6, 3, 4, 0, 4, 6, 7, 1, 6, 3, 8, 3, 7, 5, 4, 1, 3, 8, 4, 0, 2, 1, 9, 3, 9, 0, 6, 2, 7, 8, 8, 2, 5, 7, 0, 9, 4, 1, 0, 9, 2, 7, 1, 4, 6, 3, 2, 0, 3, 4, 2, 9, 7, 2, 0, 4, 3, 2, 0, 9, 2, 7, 5, 4, 4, 6, 5, 4, 8, 9, 9, 9, 9, 9, 6, 1, 9, 3, 5, 4, 0, 9, 8, 2, 5, 3, 7
OFFSET
1,1
FORMULA
Equals 2 / pFq(1,1; 3/2,3; -1/2) where pFq() is the generalized hypergeometric function.
Equals 2 / Sum_{k>=0} (-1)^k/binomial(k+2,2)/(2*k+1)!! = 2 / (1 - 1/9 + 1/90 - 1/1050 + 1/14175 - 1/218295 + ... ).
EXAMPLE
2.224412437956340467163837541384021939...
MATHEMATICA
First[RealDigits[2/HypergeometricPFQ[{1, 1}, {3/2, 3}, -1/2], 10, 100]] (* or *)
First[RealDigits[2/Sum[(-1)^k/Binomial[k+2, 2]/(2*k+1)!!, {k, 0, Infinity}], 10, 100]] (* Paolo Xausa, Nov 18 2024 *)
PROG
(PARI)
N=50;
doblfac(n) = if(n<0, 0, n<2, 1, n*doblfac(n-2));
ap1 = 2 / sum(k=0, N, (-1)^k/binomial(k+2, 2)/doblfac(2*k+1));
ap2 = 2 / sum(k=0, N+1, (-1)^k/binomial(k+2, 2)/doblfac(2*k+1));
n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
A367120 = digits(floor(10^n*ap1));
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Rok Cestnik, Nov 13 2023
STATUS
approved