login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).
1

%I #31 Nov 18 2024 03:37:55

%S 2,2,2,4,4,1,2,4,3,7,9,5,6,3,4,0,4,6,7,1,6,3,8,3,7,5,4,1,3,8,4,0,2,1,

%T 9,3,9,0,6,2,7,8,8,2,5,7,0,9,4,1,0,9,2,7,1,4,6,3,2,0,3,4,2,9,7,2,0,4,

%U 3,2,0,9,2,7,5,4,4,6,5,4,8,9,9,9,9,9,6,1,9,3,5,4,0,9,8,2,5,3,7

%N Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).

%F Equals 2 / pFq(1,1; 3/2,3; -1/2) where pFq() is the generalized hypergeometric function.

%F Equals 2 / Sum_{k>=0} (-1)^k/binomial(k+2,2)/(2*k+1)!! = 2 / (1 - 1/9 + 1/90 - 1/1050 + 1/14175 - 1/218295 + ... ).

%e 2.224412437956340467163837541384021939...

%t First[RealDigits[2/HypergeometricPFQ[{1, 1}, {3/2, 3}, -1/2], 10, 100]] (* or *)

%t First[RealDigits[2/Sum[(-1)^k/Binomial[k+2, 2]/(2*k+1)!!, {k, 0, Infinity}], 10, 100]] (* _Paolo Xausa_, Nov 18 2024 *)

%o (PARI)

%o N=50;

%o doblfac(n) = if(n<0, 0, n<2, 1, n*doblfac(n-2));

%o ap1 = 2 / sum(k=0,N, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));

%o ap2 = 2 / sum(k=0,N+1, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));

%o n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);

%o A367120 = digits(floor(10^n*ap1));

%Y Cf. A113014, A113011, A194807, A365307.

%K nonn,cons

%O 1,1

%A _Rok Cestnik_, Nov 13 2023