login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047981
a(n) = A047980(2n).
2
3, 7, 17, 71, 19, 59, 167, 757, 197, 159, 799, 227, 317, 415, 361, 521, 3289, 2633, 1637, 1861, 1691, 1997, 2053, 4097, 6437, 5731, 9199, 11603, 5641, 3833, 26885, 6637, 26815, 32117, 18637, 29933, 31667, 5227, 19891, 47303, 54973, 5207, 59537
OFFSET
1,1
FORMULA
a(n) = min {k}: A034693(a(n)) is an even number such that in a(n)*k+1 progression the first prime occurs at even 2n=k position.
EXAMPLE
First example: a(1)=3 since in 3k+1 sequence, the first term is 3, a prime and the d=2 is the smallest such difference. The next such progression is 5k+1 because 5*2+1=11 is prime. 2nd example: here at n=6 a(6)=59. This means that 2n=12 occurs first in A034693 at its position 59, which means that its first prime is 12*59+1=709. arises as 12th term (such progressions are: 59k+1,85k+1,133k+1, etc.)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved