login
A047983
Number of integers less than n but with the same number of divisors.
13
0, 0, 1, 0, 2, 0, 3, 1, 1, 2, 4, 0, 5, 3, 4, 0, 6, 1, 7, 2, 5, 6, 8, 0, 2, 7, 8, 3, 9, 1, 10, 4, 9, 10, 11, 0, 11, 12, 13, 2, 12, 3, 13, 5, 6, 14, 14, 0, 3, 7, 15, 8, 15, 4, 16, 5, 17, 18, 16, 0, 17, 19, 9, 0, 20, 6, 18, 10, 21, 7, 19, 1, 20, 22, 11, 12, 23, 8, 21, 1, 1, 24, 22, 2, 25, 26, 27
OFFSET
1,5
COMMENTS
Invented by the HR concept formation program.
LINKS
Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
Simon Colton, HR - Automatic Theory Formation in Pure Mathematics, 1998-1999. [Wayback Machine link]
FORMULA
f(n) = |{k < n : tau(k) = tau(n)}|.
a(n) = A067004(n) - 1. - Amiram Eldar, Feb 04 2025
EXAMPLE
f(10) = 2 because tau(10) = 4 and also tau(6) = tau(8) = 4.
MATHEMATICA
a[n_] := With[{tau = DivisorSigma[0, n]}, Length[ Select[ Range[n-1], DivisorSigma[0, #] == tau & ]]]; Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Nov 30 2011 *)
Module[{nn=90, ds}, ds=DivisorSigma[0, Range[nn]]; Table[Count[Take[ds, n], ds[[n]]]- 1, {n, nn}]] (* Harvey P. Dale, Feb 16 2014 *)
PROG
(PARI) A047983(n) = {local(d); d=numdiv(n); sum(k=1, n-1, (numdiv(k)==d))} \\ Michael B. Porter, Mar 01 2010
(Haskell)
a047983 n = length [x | x <- [1..n-1], a000005 x == a000005 n]
-- Reinhard Zumkeller, Nov 06 2011
(Python)
from sympy import divisor_count as D
def a(n): return sum([1 for k in range(1, n) if D(k) == D(n)]) # Indranil Ghosh, Apr 30 2017
CROSSREFS
Position of the 0's form A007416.
Sequence in context: A246370 A378125 A362557 * A070812 A308230 A061865
KEYWORD
nice,nonn,changed
AUTHOR
Simon Colton (simonco(AT)cs.york.ac.uk)
STATUS
approved