OFFSET
1,5
COMMENTS
Invented by the HR concept formation program.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
Simon Colton, HR - Automatic Theory Formation in Pure Mathematics, 1998-1999. [Wayback Machine link]
FORMULA
f(n) = |{k < n : tau(k) = tau(n)}|.
a(n) = A067004(n) - 1. - Amiram Eldar, Feb 04 2025
EXAMPLE
f(10) = 2 because tau(10) = 4 and also tau(6) = tau(8) = 4.
MATHEMATICA
a[n_] := With[{tau = DivisorSigma[0, n]}, Length[ Select[ Range[n-1], DivisorSigma[0, #] == tau & ]]]; Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Nov 30 2011 *)
Module[{nn=90, ds}, ds=DivisorSigma[0, Range[nn]]; Table[Count[Take[ds, n], ds[[n]]]- 1, {n, nn}]] (* Harvey P. Dale, Feb 16 2014 *)
PROG
(PARI) A047983(n) = {local(d); d=numdiv(n); sum(k=1, n-1, (numdiv(k)==d))} \\ Michael B. Porter, Mar 01 2010
(Haskell)
a047983 n = length [x | x <- [1..n-1], a000005 x == a000005 n]
-- Reinhard Zumkeller, Nov 06 2011
(Python)
from sympy import divisor_count as D
def a(n): return sum([1 for k in range(1, n) if D(k) == D(n)]) # Indranil Ghosh, Apr 30 2017
CROSSREFS
KEYWORD
nice,nonn,changed
AUTHOR
Simon Colton (simonco(AT)cs.york.ac.uk)
STATUS
approved