|
|
A015910
|
|
a(n) = 2^n mod n.
|
|
62
|
|
|
0, 0, 2, 0, 2, 4, 2, 0, 8, 4, 2, 4, 2, 4, 8, 0, 2, 10, 2, 16, 8, 4, 2, 16, 7, 4, 26, 16, 2, 4, 2, 0, 8, 4, 18, 28, 2, 4, 8, 16, 2, 22, 2, 16, 17, 4, 2, 16, 30, 24, 8, 16, 2, 28, 43, 32, 8, 4, 2, 16, 2, 4, 8, 0, 32, 64, 2, 16, 8, 44, 2, 64, 2, 4, 68, 16, 18, 64, 2, 16, 80, 4, 2, 64
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Known solutions to 2^n == 3 (mod n) are given in A050259.
This sequence is conjectured to include every integer k >= 0 except k = 1. A036236 includes a proof that k = 1 is not in this sequence, and n = A036236(k) solves a(n) = k for all other 0 <= k <= 1000. - David W. Wilson, Oct 11 2011
It could be argued that a(0) := 1 would make sense, e.g., thinking of "mod n" as "in Z/nZ", and/or because (anything)^0 = 1. See also A112987. - M. F. Hasler, Nov 09 2018
|
|
REFERENCES
|
Richard K. Guy, Unsolved Problems in Number Theory, F10.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(7) = 2 because 2^7 = 128 = 2 mod 7.
a(8) = 0 because 2^8 = 256 = 0 mod 8.
a(9) = 8 because 2^9 = 512 = 8 mod 9.
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[PowerMod[2, n, n], {n, 85}]
|
|
PROG
|
(Maxima) makelist(power_mod(2, n, n), n, 1, 84); /* Bruno Berselli, May 20 2011 */
(Haskell)
import Math.NumberTheory.Moduli (powerMod)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|