login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305572
a(n) = (-1)^(n-1) + Sum_{d|n, d>1} a(n/d)^d.
1
1, 0, 2, 0, 2, 4, 2, 0, 10, 4, 2, 32, 2, 4, 42, 0, 2, 228, 2, 32, 138, 4, 2, 1536, 34, 4, 1514, 32, 2, 3940, 2, 0, 2058, 4, 162, 102944, 2, 4, 8202, 1536, 2, 51940, 2, 32, 207370, 4, 2, 3538944, 130, 3204, 131082, 32, 2, 15668836, 2082, 1536, 524298, 4, 2, 54327840
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_t (-1)^(n-k) where the sum is over all same-trees of weight n (see A281145 for definition) and k is the number of leaves.
MATHEMATICA
a[n_]:=a[n]=(-1)^(n-1)+Sum[a[n/y]^y, {y, Divisors[n]//Rest}];
Array[a, 40]
PROG
(PARI) A305572(n) = ((-1)^(n-1) + sumdiv(n, d, if(d==1, 0, A305572(n/d)^d))); \\ Antti Karttunen, Dec 05 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2018
STATUS
approved