login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-1)^(n-1) + Sum_{d|n, d>1} a(n/d)^d.
1

%I #11 Dec 06 2021 03:08:17

%S 1,0,2,0,2,4,2,0,10,4,2,32,2,4,42,0,2,228,2,32,138,4,2,1536,34,4,1514,

%T 32,2,3940,2,0,2058,4,162,102944,2,4,8202,1536,2,51940,2,32,207370,4,

%U 2,3538944,130,3204,131082,32,2,15668836,2082,1536,524298,4,2,54327840

%N a(n) = (-1)^(n-1) + Sum_{d|n, d>1} a(n/d)^d.

%H Antti Karttunen, <a href="/A305572/b305572.txt">Table of n, a(n) for n = 1..6911</a>

%F a(n) = Sum_t (-1)^(n-k) where the sum is over all same-trees of weight n (see A281145 for definition) and k is the number of leaves.

%t a[n_]:=a[n]=(-1)^(n-1)+Sum[a[n/y]^y,{y,Divisors[n]//Rest}];

%t Array[a,40]

%o (PARI) A305572(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,A305572(n/d)^d))); \\ _Antti Karttunen_, Dec 05 2021

%Y Cf. A196545, A273873, A281145, A289078, A289079, A289501, A290261, A290971, A291441, A300862-A300866.

%K nonn

%O 1,3

%A _Gus Wiseman_, Jun 05 2018