login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007607
Skip 1, take 2, skip 3, etc.
(Formerly M0821)
10
2, 3, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 29, 30, 31, 32, 33, 34, 35, 36, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130
OFFSET
1,1
COMMENTS
Numbers k with the property that the smallest Dyck path of the symmetric representation of sigma(k) has a central peak. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
Union of A317303 and A014105. - Omar E. Pol, Aug 29 2018
REFERENCES
R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
G.f.: 1/(1-x) * (1/(1-x) + x*Sum_{k>=1} (2k+1)*x^(k*(k+1))). - Ralf Stephan, Mar 03 2004
a(A000290(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011
A057211(a(n)) = 0. - Reinhard Zumkeller, Dec 30 2011
a(n) = floor(sqrt(n) + 1/2)^2 + n = A053187(n) + n. - Ridouane Oudra, May 04 2019
EXAMPLE
From Omar E. Pol, Aug 29 2018: (Start)
Written as an irregular triangle in which the row lengths are the nonzero even numbers the sequence begins:
2, 3;
7, 8, 9, 10;
16, 17, 18, 19, 20, 21;
29, 30, 31, 32, 33, 34, 35, 36;
46, 47, 48, 49, 50, 51, 52, 53, 54, 55;
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78;
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105;
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136;
...
Row sums give the nonzero terms of A317297.
Column 1 gives A130883, n >= 1.
Right border gives A014105, n >= 1.
(End)
MATHEMATICA
Flatten[ Table[i, {j, 2, 16, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *)
With[{t=20}, Flatten[Take[TakeList[Range[(t(t+1))/2], Range[t]], {2, -1, 2}]]] (* Harvey P. Dale, Sep 26 2021 *)
PROG
(Haskell)
a007607 n = a007607_list !! (n-1)
a007607_list = skipTake 1 [1..] where
skipTake k xs = take (k + 1) (drop k xs)
++ skipTake (k + 2) (drop (2*k + 1) xs)
-- Reinhard Zumkeller, Feb 12 2011
(PARI) for(m=0, 10, for(n=2*m^2+3*m+2, 2*m^2+5*m+3, print1(n", "))) \\ Charles R Greathouse IV, Feb 12 2011
(Haskell)
a007607_list' = f $ tail $ scanl (+) 0 [1..] where
f (t:t':t'':ts) = [t+1..t'] ++ f (t'':ts)
-- Reinhard Zumkeller, Feb 12 2011
CROSSREFS
Complement of A007606.
Similar to A360418.
Sequence in context: A284514 A268398 A249587 * A370902 A076682 A327224
KEYWORD
nonn,easy,tabf
STATUS
approved