login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002331 Values of x in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).
(Formerly M0096 N0033)
23
1, 1, 2, 1, 2, 1, 4, 2, 5, 3, 5, 4, 1, 3, 7, 4, 7, 6, 2, 9, 7, 1, 2, 8, 4, 1, 10, 9, 5, 2, 12, 11, 9, 5, 8, 7, 10, 6, 1, 3, 14, 12, 7, 4, 10, 5, 11, 10, 14, 13, 1, 8, 5, 17, 16, 4, 13, 6, 12, 1, 5, 15, 2, 9, 19, 12, 17, 11, 5, 14, 10, 18, 4, 6, 16, 20, 19, 10, 13, 4, 6, 15, 22, 11, 3, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
REFERENCES
A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. T. Benjamin and D. Zeilberger, Pythagorean primes and palindromic continued fractionsINTEGERS 5(1) (2005) #A30
John Brillhart, Note on representing a prime as a sum of two squares, Math. Comp. 26 (1972), pp. 1011-1013.
A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904. [Annotated scans of selected pages]
J. Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528.
Eric Weisstein's World of Mathematics, Fermat's 4n Plus 1 Theorem.
FORMULA
a(n) = A096029(n) - A096030(n) for n > 1. - Lekraj Beedassy, Jul 16 2004
a(n+1) = Min(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A363051(A002313(n)). - R. J. Mathar, Jan 31 2024
EXAMPLE
The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
MAPLE
See A002330 for Maple program.
# alternative
A002331 := proc(n)
end proc:
seq(A002331(n), n=1..100) ; # R. J. Mathar, Feb 01 2024
MATHEMATICA
pmax = 1000; x[p_] := Module[{x, y}, x /. ToRules[Reduce[0 <= x <= y && x^2 + y^2 == p, {x, y}, Integers]]]; For[n=1; p=2, p<pmax, p = NextPrime[p], If[Mod[p, 4] == 1 || Mod[p, 4] == 2, a[n] = x[p]; Print["a(", n, ") = ", a[n]]; n++]]; Array[a, n-1] (* Jean-François Alcover, Feb 26 2016 *)
PROG
(PARI) f(p)=my(s=lift(sqrt(Mod(-1, p))), x=p, t); if(s>p/2, s=p-s); while(s^2>p, t=s; s=x%s; x=t); s
forprime(p=2, 1e3, if(p%4-3, print1(sqrtint(p-f(p)^2)", ")))
\\ Charles R Greathouse IV, Apr 24 2012
(PARI) do(p)=qfbsolve(Qfb(1, 0, 1), p)[2]
forprime(p=2, 1e3, if(p%4-3, print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013
CROSSREFS
Cf. A002330, A002313, A002144, A027862 (locates y=x+1).
Sequence in context: A051493 A338201 A029173 * A060805 A184342 A030767
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 07:26 EDT 2024. Contains 371799 sequences. (Running on oeis4.)