

A002366


Numbers x such that x^2 + y^2 = p^2 = A002144(n)^2, x < y.
(Formerly M2442 N0970)


12



3, 5, 8, 20, 12, 9, 28, 11, 48, 39, 65, 20, 60, 15, 88, 51, 85, 52, 19, 95, 28, 60, 105, 120, 32, 69, 115, 160, 68, 25, 75, 175, 180, 225, 252, 189, 228, 40, 120, 29, 145, 280, 168, 261, 220, 279, 341, 165, 231, 48, 368, 240, 35, 105, 200, 315, 300, 385, 52, 260, 259
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 7779.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
A. J. C. Cunningham, Quadratic and Linear Tables, Hodgson, London, 1927 [Annotated scanned copy of selected pages]


EXAMPLE

The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2a^2).

.p..a..b..t_1..c...d.t_2.t_3..t_4

.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................


CROSSREFS

Cf. A002313, A002330, A002331.
Sequence in context: A196140 A240154 A112656 * A141615 A075192 A101984
Adjacent sequences: A002363 A002364 A002365 * A002367 A002368 A002369


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Ray Chandler, Jun 23 2004
Corrected definition to require p=A002144(n), which defines the order of the terms.  M. F. Hasler, Feb 24 2009


STATUS

approved



