login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070079
a(n) gives the odd leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).
14
3, 5, 15, 21, 35, 9, 45, 11, 55, 39, 65, 99, 91, 15, 105, 51, 85, 165, 19, 95, 195, 221, 105, 209, 255, 69, 115, 231, 285, 25, 75, 175, 299, 225, 275, 189, 325, 399, 391, 29, 145, 351, 425, 261, 459, 279, 341, 165, 231, 575, 465, 551, 35, 105, 609, 315, 589, 385, 675
OFFSET
1,1
COMMENTS
Consider sequence A002144 of primes congruent to 1 (mod 4) and equal to x^2 + y^2, with y>x given by A002330 and A002331; sequence gives values y^2 - x^2.
Odd legs of primitive Pythagorean triangles with unique (prime) hypotenuse (A002144), sorted on the latter. Corresponding even legs are given by 4*A070151 (or A145046). - Lekraj Beedassy, Jul 22 2005
FORMULA
a(n)=A079886(n)*A079887(n) - Benoit Cloitre, Jan 13 2003
a(n) is the odd positive integer with A080109(n) = A002144(n)^2 = a(n)^2 + (4*A070151(n))^2, in this unique decomposition into positive squares (up to order). See the Lekraj Beedassy, comment. - Wolfdieter Lang, Jan 13 2015
EXAMPLE
The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
MATHEMATICA
pp = Select[ Range[200] // Prime, Mod[#, 4] == 1 &]; f[p_] := y^2 - x^2 /. ToRules[ Reduce[0 <= x <= y && p == x^2 + y^2, {x, y}, Integers]]; A070079 = f /@ pp (* Jean-François Alcover, Jan 15 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Lekraj Beedassy, May 06 2002
EXTENSIONS
More terms from Benoit Cloitre, Jan 13 2003
Edited: Used a different name and moved old name to the comment section. - Wolfdieter Lang, Jan 13 2015
STATUS
approved