|
|
A070079
|
|
a(n) gives the odd leg of the unique primitive Pythagorean triangle with hypotenuse A002144(n).
|
|
14
|
|
|
3, 5, 15, 21, 35, 9, 45, 11, 55, 39, 65, 99, 91, 15, 105, 51, 85, 165, 19, 95, 195, 221, 105, 209, 255, 69, 115, 231, 285, 25, 75, 175, 299, 225, 275, 189, 325, 399, 391, 29, 145, 351, 425, 261, 459, 279, 341, 165, 231, 575, 465, 551, 35, 105, 609, 315, 589, 385, 675
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Consider sequence A002144 of primes congruent to 1 (mod 4) and equal to x^2 + y^2, with y>x given by A002330 and A002331; sequence gives values y^2 - x^2.
Odd legs of primitive Pythagorean triangles with unique (prime) hypotenuse (A002144), sorted on the latter. Corresponding even legs are given by 4*A070151 (or A145046). - Lekraj Beedassy, Jul 22 2005
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
|
|
MATHEMATICA
|
pp = Select[ Range[200] // Prime, Mod[#, 4] == 1 &]; f[p_] := y^2 - x^2 /. ToRules[ Reduce[0 <= x <= y && p == x^2 + y^2, {x, y}, Integers]]; A070079 = f /@ pp (* Jean-François Alcover, Jan 15 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Edited: Used a different name and moved old name to the comment section. - Wolfdieter Lang, Jan 13 2015
|
|
STATUS
|
approved
|
|
|
|