login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141615
Inverse binomial transform of A120070.
1
3, 5, -8, 21, -47, 84, -108, 53, 207, -876, 2289, -5097, 10770, -22720, 48489, -103569, 217292, -440178, 848628, -1533887, 2542431, -3695469, 4141675, -1365090, -10867236, 46576386, -135501531, 338590821, -778823106, 1704048861, -3617744616, 7553704652, -15651526743, 32346059748, -66772731098
OFFSET
0,1
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A120070(k). - G. C. Greubel, Sep 22 2024
MATHEMATICA
A120070 = Table[n^2 - k^2, {n, 2, 100}, {k, n-1}]//Flatten;
A141615[n_]:= Sum[(-1)^(n+k)*Binomial[n, k]*A120070[[k+1]], {k, 0, n}];
Table[A141615[n], {n, 0, 40}] (* G. C. Greubel, Sep 22 2024 *)
PROG
(Magma)
A120070:= [n^2-k^2: k in [1..n-1], n in [2..100]];
A141615:= func< n | (&+[(-1)^(n+k)*Binomial(n, k)*A120070[k+1]: k in [0..n]]) >;
[A141615(n): n in [0..40]]; // G. C. Greubel, Sep 22 2024
(SageMath)
A120070=flatten([[n^2 -k^2 for k in range(1, n)] for n in range(2, 101)])
def A141615(n): return sum((-1)^(n+k)*binomial(n, k)*A120070[k] for k in range(n+1))
[A141615(n) for n in range(41)] # G. C. Greubel, Sep 22 2024
CROSSREFS
Sequence in context: A112656 A002366 A377254 * A075192 A361089 A101984
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Aug 23 2008
EXTENSIONS
More terms from N. J. A. Sloane, Jan 25 2011
STATUS
approved