login
A002973
a(n) is half of the even member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.
(Formerly M0135)
15
1, 1, 2, 1, 3, 2, 1, 3, 4, 4, 2, 5, 5, 4, 2, 5, 3, 1, 5, 6, 7, 1, 4, 2, 8, 5, 7, 8, 1, 6, 7, 8, 9, 4, 9, 5, 3, 10, 10, 7, 6, 10, 2, 5, 11, 10, 5, 7, 10, 12, 4, 12, 9, 8, 2, 11, 3, 6, 13, 13, 11, 1, 13, 10, 6, 11, 13, 14, 7, 5, 9, 2, 3, 8, 10, 12, 5, 14, 2, 3, 14, 11, 15, 16, 16, 5, 15, 1, 8, 11
OFFSET
1,3
COMMENTS
a(n) is odd iff x^2 + y^2 == 5 (mod 8). [Vladimir Shevelev, Jul 12 2009]
A002972(n)^2 + 4*a(n)^2 = A002144(n); A002331(n+1) = Min(A002972(n),2*a(n)) and A002330(n+1) = Max(A002972(n),2*a(n)). [Reinhard Zumkeller, Feb 16 2010]
REFERENCES
E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Rainer Rosenthal, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971. [Annotated scans of a few pages]
FORMULA
a(n) = Min(A173331(n), A002144(n) - A173331(n)) / 2. [Reinhard Zumkeller, Feb 16 2010]
EXAMPLE
The 3rd prime of the form 4i+1 is 17 = 1^2 + 4^2, so a(3) = 4/2 = 2.
MATHEMATICA
pmax = 1000; k[p_] := Module[{k, m}, k /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, p<pmax, p = NextPrime[p], If[Mod[p, 4]==1, a[n] = k[p]; Print["a(", n, ") = ", a[n]]; n++]]; Array[a, n-1] (* Jean-François Alcover, Feb 26 2016 *)
PROG
(PARI) \\ use function decomp2sq from A002972
forprime (p=5, 1000, if (p%4==1, print1(select(x->!(x%2), decomp2sq(p))[1]/2, ", "))) \\ Hugo Pfoertner, Aug 27 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Better description from Jud McCranie, Mar 05 2003
STATUS
approved