login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060805
Numerators of special continued fraction for 2*zeta(3).
4
2, 1, 2, 1, 4, 2, 6, 4, 9, 6, 12, 9, 16, 12, 20, 16, 25, 20, 30, 25, 36, 30, 42, 36, 49, 42, 56, 49, 64, 56, 72, 64, 81, 72, 90, 81, 100, 90, 110, 100, 121, 110, 132, 121, 144, 132, 156, 144, 169, 156, 182, 169, 196, 182, 210, 196, 225, 210, 240, 225, 256, 240, 272, 256
OFFSET
1,1
REFERENCES
Y. V. Nesterenko, A few remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.
LINKS
Yu. V. Nesterenko, A few remarks on zeta(3), Math. Notes 59 (1996) 625-636. [From R. J. Mathar, Jul 31 2010]
FORMULA
a(n) = A008733(n-1), n>2. - R. J. Mathar, Jul 31 2010
MAPLE
A060805 := proc(n) local nshf, k ; if n <= 2 then op(n, [2, 1]) ; else nshf := n-1 ; k := floor(nshf/4) ; if nshf mod 4 = 1 then k*(k+1) ; elif nshf mod 4 = 0 then (k+1)^2 ; elif nshf mod 4 = 2 then (k+1)*(k+2) ; else (k+1)^2 ; end if; end if; end proc: seq(A060805(n), n=1..80) ; # R. J. Mathar, Jul 31 2010
MATHEMATICA
Join[{2, 1}, LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {2, 1, 4, 2, 6, 4, 9}, 100]] (* Jean-François Alcover, Apr 01 2020 *)
CROSSREFS
Cf. A152648 (2*zeta(3)).
Sequence in context: A338201 A029173 A002331 * A184342 A030767 A352933
KEYWORD
nonn,cofr
AUTHOR
N. J. A. Sloane, Apr 29 2001
EXTENSIONS
More terms from R. J. Mathar, Jul 31 2010
STATUS
approved