login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001358
Semiprimes (or biprimes): products of two primes.
(Formerly M3274 N1323)
1742
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187
OFFSET
1,1
COMMENTS
Numbers of the form p*q where p and q are primes, not necessarily distinct.
These numbers are sometimes called semiprimes or 2-almost primes.
Numbers n such that Omega(n) = 2 where Omega(n) = A001222(n) is the sum of the exponents in the prime decomposition of n.
Complement of A100959; A064911(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
The graph of this sequence appears to be a straight line with slope 4. However, the asymptotic formula shows that the linearity is an illusion and in fact a(n)/n ~ log(n)/log(log(n)) goes to infinity. See also the graph of A066265 = number of semiprimes < 10^n.
For numbers between 33 and 15495, semiprimes are more plentiful than any other k-almost prime. See A125149.
Numbers that are divisible by exactly 2 prime powers (not including 1). - Jason Kimberley, Oct 02 2011
The (disjoint) union of A006881 and A001248. - Jason Kimberley, Nov 11 2015
An equivalent definition of this sequence is a'(n) = smallest composite number which is not divided by any smaller composite number a'(1),...,a'(n-1). - Meir-Simchah Panzer, Jun 22 2016
The above characterization can be simplified to "Composite numbers not divisible by a smaller term." This shows that this is the equivalent of primes computed via Eratosthenes's sieve, but starting with the set of composite numbers (i.e., complement of 1 union primes) instead of all positive integers > 1. It's easy to see that iterating the method (using Eratosthenes's sieve each time on the remaining numbers, complement of the previously computed set) yields numbers with bigomega = k for k = 0, 1, 2, 3, ..., i.e., {1}, A000040, this, A014612, etc. - M. F. Hasler, Apr 24 2019
For all n except n = 2, a(n) is a deficient number. - Amrit Awasthi, Sep 10 2024
It is reasonable to assume that the "comforting numbers" which John T. Williams found in Chapter 3 of Milne's book "The House at Pooh Corner" are these semiprimes. Winnie-the-Pooh wonders whether he has 14 or 15 honey pots and concludes: "It's sort of comforting." To arrange a semiprime number of honey pots in a rectangular way, let's say on a shelf, with the larger divisor parallel to the wall, there is only one solution and this is for a simple mind like Winnie-the-Pooh comforting. - Ruediger Jehn, Dec 12 2024
REFERENCES
Archimedeans Problems Drive, Eureka, 17 (1954), 8.
Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
John T. Williams, Pooh and the Philosophers, Dutton Books, 1995.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 10000 terms from T. D. Noe)
Dragos Crisan and Radek Erban, On the counting function of semiprimes, INTEGERS, Vol. 21 (2021), #A122.
Daniel A. Goldston, Sidney W. Graham, János Pintz and Cem Y. Yildirim, Small gaps between primes or almost primes, Transactions of the American Mathematical Society, Vol. 361, No. 10 (2009), pp. 5285-5330, arXiv preprint, arXiv:math/0506067 [math.NT], 2005.
Sh. T. Ishmukhametov and F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59. English translation, Russian Mathematics, Vol. 58, No. 8 (2014), pp. 43-48, alternative link.
Donovan Johnson, Jonathan Vos Post, and Robert G. Wilson v, Selected n and a(n). (2.5 MB)
Dixon Jones, Quickie 593, Mathematics Magazine, Vol. 47, No. 3, May 1974, p. 167.
Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909. See Vol. 1, p. 211.
Xianmeng Meng, On sums of three integers with a fixed number of prime factors, Journal of Number Theory, Vol. 114, No. 1 (2005), pp. 37-65.
Michael Penn, What makes a number "good"?, YouTube video, 2022.
Eric Weisstein's World of Mathematics, Semiprime.
Eric Weisstein's World of Mathematics, Almost Prime.
Wikipedia, Almost prime.
FORMULA
a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
A100484 UNION A046315. - R. J. Mathar, Apr 19 2023
EXAMPLE
From Gus Wiseman, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
4 = 2*2 46 = 2*23 91 = 7*13 141 = 3*47
6 = 2*3 49 = 7*7 93 = 3*31 142 = 2*71
9 = 3*3 51 = 3*17 94 = 2*47 143 = 11*13
10 = 2*5 55 = 5*11 95 = 5*19 145 = 5*29
14 = 2*7 57 = 3*19 106 = 2*53 146 = 2*73
15 = 3*5 58 = 2*29 111 = 3*37 155 = 5*31
21 = 3*7 62 = 2*31 115 = 5*23 158 = 2*79
22 = 2*11 65 = 5*13 118 = 2*59 159 = 3*53
25 = 5*5 69 = 3*23 119 = 7*17 161 = 7*23
26 = 2*13 74 = 2*37 121 = 11*11 166 = 2*83
33 = 3*11 77 = 7*11 122 = 2*61 169 = 13*13
34 = 2*17 82 = 2*41 123 = 3*41 177 = 3*59
35 = 5*7 85 = 5*17 129 = 3*43 178 = 2*89
38 = 2*19 86 = 2*43 133 = 7*19 183 = 3*61
39 = 3*13 87 = 3*29 134 = 2*67 185 = 5*37
(End)
MAPLE
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
MATHEMATICA
Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
PROG
(PARI) select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
(PARI) list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
(PARI) A1358=List(4); A001358(n)={while(#A1358<n, my(t=A1358[#A1358]); until(bigomega(t++)==2, ); listput(A1358, t)); A1358[n]} \\ M. F. Hasler, Apr 24 2019
(Haskell)
a001358 n = a001358_list !! (n-1)
a001358_list = filter ((== 2) . a001222) [1..]
(Magma) [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
(Python)
from sympy import factorint
def ok(n): return sum(factorint(n).values()) == 2
print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
(Python)
from math import isqrt
from sympy import primepi, prime
def A001358(n):
def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 23 2024
CROSSREFS
Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
The squarefree case is A006881 with odd/even terms A046388/A100484 (except 4).
Including primes gives A037143.
The odd/even terms are A046315/A100484.
Partial sums are A062198.
The prime factors are A084126/A084127.
Grouping by greater factor gives A087112.
The product/sum/difference of prime indices is A087794/A176504/A176506.
Positions of even/odd terms are A115392/A289182.
The terms with relatively prime/divisible prime indices are A300912/A318990.
Factorizations using these terms are counted by A320655.
The prime indices are A338898/A338912/A338913.
Grouping by weight (sum of prime indices) gives A338904, with row sums A024697.
The terms with even/odd weight are A338906/A338907.
The terms with odd/even prime indices are A338910/A338911.
The least/greatest term of weight n is A339114/A339115.
Sequence in context: A320912 A359765 A240938 * A176540 A108764 A193801
KEYWORD
nonn,easy,nice,core,changed
EXTENSIONS
More terms from James A. Sellers, Aug 22 2000
STATUS
approved