This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014673 Smallest prime factor of greatest proper divisor of n. 15
 1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 2, 1, 7, 5, 2, 1, 3, 1, 2, 7, 11, 1, 2, 5, 13, 3, 2, 1, 3, 1, 2, 11, 17, 7, 2, 1, 19, 13, 2, 1, 3, 1, 2, 3, 23, 1, 2, 7, 5, 17, 2, 1, 3, 11, 2, 19, 29, 1, 2, 1, 31, 3, 2, 13, 3, 1, 2, 23, 5, 1, 2, 1, 37, 5, 2, 11, 3, 1, 2, 3, 41, 1, 2, 17, 43, 29, 2, 1, 3, 13, 2, 31, 47 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS For n > 1: a(n) = 1 iff n is prime; a(A001358(n)) = A084127(n); a(A025475(n)) = A020639(A025475(n)). [corrected by Peter Munn, Feb 19 2017] When n is composite, this is the 2nd factor when n is written as a product of primes in nondecreasing order. For example, 12 = 2*2*3, so a(12) = 2. - Peter Munn, Feb 19 2017 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A020639(A032742(n)). A117357(n) = A020639(A054576(n)); A117358(n) = A032742(A054576(n)) = A054576(n)/A117357(n). - Reinhard Zumkeller, Mar 10 2006 MATHEMATICA PrimeFactors[ n_ ] := Flatten[ Table[ # [ [ 1 ] ], {1} ] & /@ FactorInteger[ n ] ]; f[ n_ ] := Block[ {gpd = Divisors[ n ][ [ -2 ] ]}, If[ gpd == 1, 1, PrimeFactors[ gpd ][ [ 1 ] ] ] ]; Table[ If[ n == 1, 1, f[ n ] ], {n, 1, 95} ] (* Second program: *) Table[If[Or[PrimeQ@ n, n == 1], 1, FactorInteger[n/SelectFirst[Prime@ Range@ PrimePi[Sqrt@ n], Divisible[n, #] &]][[1, 1]] ], {n, 94}] (* Michael De Vlieger, Aug 14 2017 *) PROG (PARI) lpf(n)=if(n>1, factor(n)[1, 1], 1) a(n)=lpf(n/lpf(n)) \\ Charles R Greathouse IV, May 09 2013 (PARI) a(n)=if(n<4||isprime(n), return(1)); my(f=factor(n)); if(f[1, 2]>1, f[1, 1], f[2, 1]) \\ Charles R Greathouse IV, May 09 2013 (Scheme) (define (A014673 n) (A020639 (/ n (A020639 n)))) ;; Code for A020639 given under that entry - Antti Karttunen, Aug 12 2017 CROSSREFS Cf. A085392, A085393. Sequence in context: A096107 A128487 A056609 * A280686 A085392 A089384 Adjacent sequences:  A014670 A014671 A014672 * A014674 A014675 A014676 KEYWORD nonn AUTHOR Reinhard Zumkeller, Jun 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 19:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)