

A069275


14almost primes (generalization of semiprimes).


27



16384, 24576, 36864, 40960, 55296, 57344, 61440, 82944, 86016, 90112, 92160, 102400, 106496, 124416, 129024, 135168, 138240, 139264, 143360, 153600, 155648, 159744, 186624, 188416, 193536, 200704, 202752, 207360, 208896, 215040, 225280
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Product of 14 not necessarily distinct primes.
Divisible by exactly 14 prime powers (not including 1).
Any 14almost prime can be represented in several ways as a product of two 7almost primes A046308; and in several ways as a product of seven semiprimes A001358.  Jonathan Vos Post, Dec 11 2004


LINKS

D. W. Wilson, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Almost Prime.


FORMULA

Product p_i^e_i with Sum e_i = 14.


MATHEMATICA

Select[Range[50000], Plus @@ Last /@ FactorInteger[ # ] == 14 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)


PROG

(PARI) k=14; start=2^k; finish=240000; v=[] for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v


CROSSREFS

Cf. A101637, A101638, A101605, A101606.
Sequences listing ralmost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), this sequence(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).  Jason Kimberley, Oct 02 2011
Sequence in context: A069389 A069415 A212936 * A216074 A258736 A255666
Adjacent sequences: A069272 A069273 A069274 * A069276 A069277 A069278


KEYWORD

nonn


AUTHOR

Rick L. Shepherd, Mar 13 2002


STATUS

approved



