login
A069275
14-almost primes (generalization of semiprimes).
29
16384, 24576, 36864, 40960, 55296, 57344, 61440, 82944, 86016, 90112, 92160, 102400, 106496, 124416, 129024, 135168, 138240, 139264, 143360, 153600, 155648, 159744, 186624, 188416, 193536, 200704, 202752, 207360, 208896, 215040, 225280
OFFSET
1,1
COMMENTS
Product of 14 not necessarily distinct primes.
Divisible by exactly 14 prime powers (not including 1).
Any 14-almost prime can be represented in several ways as a product of two 7-almost primes A046308; and in several ways as a product of seven semiprimes A001358. - Jonathan Vos Post, Dec 11 2004
LINKS
Eric Weisstein's World of Mathematics, Almost Prime.
FORMULA
Product p_i^e_i with Sum e_i = 14.
MATHEMATICA
Select[Range[50000], Plus @@ Last /@ FactorInteger[ # ] == 14 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
PROG
(PARI) k=14; start=2^k; finish=240000; v=[]; for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A069275(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 14)))
return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024
CROSSREFS
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), this sequence(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Sequence in context: A069389 A069415 A212936 * A216074 A258736 A255666
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Mar 13 2002
STATUS
approved