login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237040 Semiprimes of the form k^3 + 1. 14
9, 65, 217, 4097, 5833, 10649, 21953, 74089, 195113, 216001, 343001, 373249, 474553, 1000001, 1061209, 1191017, 1404929, 3241793, 3796417, 4251529, 6859001, 9261001, 12487169, 21952001, 29791001, 35937001, 43614209, 45882713, 55742969, 62099137, 89915393, 94818817, 117649001 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

k^3 + 1 is a term iff k + 1 and k^2 - k + 1 are both prime.

Is the sequence infinite? This is an analog of Landau's 4th problem, namely, are there infinitely many primes of the form k^2 + 1?

In other words: are there infinitely many primes p such that p^2 - 3*p + 3 is also prime? - Charles R Greathouse IV, Jul 02 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1400

Eric Weisstein's World of Mathematics, Semiprime

Wikipedia, Semiprime

Wikipedia, Landau's problems

FORMULA

a(n) = A096173(n)^3 + 1 = 8*A237037(n)^3 + 1.

EXAMPLE

9 = 3*3 = 2^3 + 1 is the first semiprime of the form n^3 + 1, so a(1) = 9.

MATHEMATICA

L = Select[Range[500], PrimeQ[# + 1] && PrimeQ[#^2 - # + 1] &]; L^3 + 1

Select[Range[50]^3 + 1, PrimeOmega[#] == 2 &] (* Zak Seidov, Jun 26 2017 *)

PROG

(PARI) lista(nn) = for (n=1, nn, if (bigomega(sp=n^3+1) == 2, print1(sp, ", ")); ); \\ Michel Marcus, Jun 27 2017

(PARI) list(lim)=my(v=List(), n, t); forprime(p=3, sqrtnint(lim\1-1, 3)+1, if(isprime(t=p^2-3*p+3), listput(v, t*p))); Vec(v) \\ Charles R Greathouse IV, Jul 02 2017

(MAGMA) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [1..500] | IsSemiprime(s) where s is n^3 + 1]; // Vincenzo Librandi, Jul 02 2017

CROSSREFS

Cf. A001358, A002383, A002496, A046315, A081256, A096173, A096174, A237037, A237038, A237039.

Cf. A242262 (semiprimes of the form k^3 - 1).

Sequence in context: A212668 A020299 A250415 * A055284 A081040 A102902

Adjacent sequences:  A237037 A237038 A237039 * A237041 A237042 A237043

KEYWORD

nonn

AUTHOR

Jonathan Sondow, Feb 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 15:37 EDT 2018. Contains 315346 sequences. (Running on oeis4.)