login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108764
Products of exactly two supersingular primes (A002267).
3
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 77, 82, 85, 87, 91, 93, 94, 95, 115, 118, 119, 121, 123, 133, 141, 142, 143, 145, 155, 161, 169, 177, 187, 203, 205, 209, 213, 217, 221, 235, 247, 253, 287, 289, 295, 299
OFFSET
1,1
COMMENTS
There are exactly 15 supersingular primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 and 71 (A002267). The supersingular primes are exactly the set of primes that divide the group order of the Monster group.
Peter Luschny's link shows how this sequence may be connected to Schinzel-Sierpinski conjecture and the Calkin-Wilf tree.
REFERENCES
E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232.
Ogg, A. P. "Modular Functions." In The Santa Cruz Conference on Finite Groups. Held at the University of California, Santa Cruz, Calif., 1979 (Ed. B. Cooperstein and G. Mason). Providence, RI: Amer. Math. Soc., pp. 521-532, 1980.
Silverman, J. H. The Arithmetic of Elliptic Curves II. New York: Springer-Verlag, 1994.
LINKS
N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The Primary Pretenders, Acta Arith. 78 (1997), 307-313.
P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. I., J. Reine Angew. Math. 463 (1995), 169-216.
P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. II. J. Reine Angew. Math. 519 (2000), 59-71.
A. Schinzel and W. Sierpinski, Sur certaines hypotheses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
Eric Weisstein et al., Supersingular Prime.
FORMULA
{a(n)} = {p*q: p in A002267 and q in A002267}.
EXAMPLE
1207 = 17 * 71, 3337 = 47 * 71.
MATHEMATICA
Union[ Times @@@ Tuples[{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}, 2]] (*Robert G. Wilson v, Feb 11 2011 *)
CROSSREFS
Sequence in context: A240938 A001358 A176540 * A193801 A129336 A226526
KEYWORD
easy,fini,full,nonn
AUTHOR
Jonathan Vos Post, Jun 17 2005
STATUS
approved