login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108765 G.f. (1 - x + x^2)/((1-3*x)*(x-1)^2). 4
1, 4, 14, 45, 139, 422, 1272, 3823, 11477, 34440, 103330, 310001, 930015, 2790058, 8370188, 25110579, 75331753, 225995276, 677985846, 2033957557, 6101872691, 18305618094, 54916854304, 164750562935, 494251688829, 1482755066512 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Superseeker suggests a(n+2) - 2*a(n+1) + a(n) = 7*3^n = A005032(n).

Inverse binomial transform gives match with first differences of A026622.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-7,3).

FORMULA

From Rolf Pleisch, Feb 10 2008: (Start)

a(0) = 1; a(n) = 3*a(n-1) + n.

a(n) = (7*3^n - 2*n - 3)/4. (End)

a(0)=1, a(1)=4, a(2)=14, a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Harvey P. Dale, Dec 11 2012

MATHEMATICA

s=1; lst={s}; Do[s+=(s+(n+=s)); AppendTo[lst, s], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 11 2008 *)

CoefficientList[Series[(1-x+x^2)/((1-3x)(x-1)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -7, 3}, {1, 4, 14}, 40] (* Harvey P. Dale, Dec 11 2012 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: kbasefor[(- 'j + 'k - 'ii' - 'ij' - 'ik')], vesfor = A000004, Fortype: 1A, Roktype (leftfactor) is set to:Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code)

CROSSREFS

Cf. A005032, A026622.

Sequence in context: A184138 A318019 A182902 * A304068 A005775 A094688

Adjacent sequences:  A108762 A108763 A108764 * A108766 A108767 A108768

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Jun 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)