The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226526 Slowest-growing sequence of semiprimes where 1/(sp+1) sums to 1 without actually reaching it. 1
 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 69, 1497, 259465, 4852747709, 3429487924785490781, 305153651313989042415043589313598477, 21932475414742921908206321699222250910796483151080020353252738457741771 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The semiprime analogous to A181503. Because the semiprimes are sparser than the primes in the beginning, the sequence contains more of the lesser semiprimes than the analogous sequence of primes. In fact, one has to get to the seventeenth semiprime before it, 49,is not present, whereas in A181503, one only has to get to the sixth prime before it, 13, is not present. If you change 1/(a(n)+1) to simply 1/a(n) the sequence becomes: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 355, 16627, 76723511, 17218740226618333, 374886275842473712491638217368219, 9036922116709843444667289331349853231276337589593114741410804131,.... LINKS EXAMPLE 1/(4+1) + 1/(6+1) + 1/(9+1) + … 1/(46+1) + 1/(69+1) is still less than 1. Instead of 1/69, if one were to use any semiprime between 46 and 69, {} the sum would then exceed 1. MATHEMATICA semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@ n == 2 (* For those who have Mmca v or later, you could use PrimeOmega@ n == 2 *) NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; a[n_] := a[n] = Block[{sm = Sum[1/(a[i] + 1), {i, n - 1}]}, NextSemiPrime[ Max[a[n - 1], Floor[1/(1 - sm)]]]]; a[0] = 1; Do[ Print[{n, a[n] // Timing}], {n, 25}] CROSSREFS Cf. A181503, A226527. Sequence in context: A108764 A193801 A129336 * A103607 A264815 A108574 Adjacent sequences:  A226523 A226524 A226525 * A226527 A226528 A226529 KEYWORD nonn,hard AUTHOR Aaron Meyerowitz, Jonathan Vos Post, and Robert G. Wilson v, Jun 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 21:24 EDT 2021. Contains 342941 sequences. (Running on oeis4.)