login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097313
Chebyshev polynomials of the second kind, U(n,x), evaluated at x=15.
21
0, 1, 30, 899, 26940, 807301, 24192090, 724955399, 21724469880, 651009141001, 19508549760150, 584605483663499, 17518655960144820, 524975073320681101, 15731733543660288210, 471427031236487965199, 14127079203550978667760
OFFSET
-1,3
COMMENTS
b(n+1)^2 - 14*(4*a(n))^2 = +1, n>=-1, with b(n)=A068203(n) gives all nonnegative integer solutions of this D=224 Pell equation.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 30's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
About first comment, more generally, for t(m) = m + sqrt(m^2-1) and u(n) = (t(m)^(n+1) - 1/t(m)^(n+1))/(t(m) - 1/t(m)), we can verify that ((u(n+1) - u(n-1))/2)^2 - (m^2-1)*u(n)^2 = 1. In this case is m=15. - Bruno Berselli, Nov 21 2011
For n>=0, a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,29}. - Milan Janjic, Jan 26 2015
FORMULA
a(n) = S(n, 30) = U(n, 15), n>=-1, with Chebyshev polynomials of 2nd kind. See A049310 for the triangle of S(n, x) coefficients. S(-1, x) := 0 =: U(-1, x).
G.f.: 1/(1-30*x+x^2).
a(n) = ((15+4*sqrt(14))^(n+1) - (15-4*sqrt(14))^(n+1))/(8*sqrt(14)) (Binet form).
a(n) = sqrt((A068203(n+1)^2 - 1)/224), n>=-1.
a(n) = 30*a(n-1)-a(n-2) for n>0; a(-1)=0, a(0)=1. - Philippe Deléham, Nov 18 2008
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*29^k. - Philippe Deléham, Feb 10 2012
With an offset of 0, product {n >= 1} (1 + 1/a(n)) = 1/7*(7 + 2*sqrt(14)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/15*(7 + 2*sqrt(14)). - Peter Bala, Dec 23 2012
MAPLE
0, seq(orthopoly[U](n, 15), n=0..50); # Robert Israel, Jan 26 2015
MATHEMATICA
Table[GegenbauerC[n, 1, 15], {n, -1, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
LinearRecurrence[{30, -1}, {0, 1}, 50] (* Vincenzo Librandi, Feb 12 2012 *)
ChebyshevU[Range[22] -2, 15] (* G. C. Greubel, Dec 22 2019 *)
PROG
(Sage) [lucas_number1(n, 30, 1) for n in range(0, 20)] # Zerinvary Lajos, Jun 27 2008
(Sage) [chebyshev_U(n, 15) for n in (-1..20)] # G. C. Greubel, Dec 22 2019
(Magma) I:=[0, 1]; [n le 2 select I[n] else 30*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 12 2012
(PARI) vector( 21, n, polchebyshev(n-2, 2, 15) ) \\ G. C. Greubel, Dec 22 2019
(GAP) m:=15;; a:=[0, 1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
CROSSREFS
Cf. A200442.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), this sequence (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Sequence in context: A218732 A158580 A171335 * A056389 A056379 A320670
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved