login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077423 Chebyshev sequence U(n,12)=S(n,24) with Diophantine property. 1
1, 24, 575, 13776, 330049, 7907400, 189447551, 4538833824, 108742564225, 2605282707576, 62418042417599, 1495427735314800, 35827847605137601, 858372914787987624, 20565122107306565375, 492704557660569581376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

b(n)^2 - 143*a(n)^2 = 1 with the companion sequence b(n)=A077424(n+1).

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 24's along the main diagonal, and i's along the subdiagonal and the superdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,23}. Milan Janjic, Jan 25 2015

LINKS

Table of n, a(n) for n=0..15.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (24,-1).

FORMULA

a(n)=24*a(n-1) - a(n-2), a(-1) := 0, a(0)=1.

a(n)= S(n, 24) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310.

a(n)= (ap^(n+1) - am^(n+1))/(ap - am) with ap := 12+sqrt(143) and am := 12-sqrt(143).

a(n)= sum(((-1)^k)*binomial(n-k, k)*24^(n-2*k), k=0..floor(n/2)).

a(n)=sqrt((A077424(n+1)^2 - 1)/143).

G.f.: 1/(1-24*x+x^2). - Philippe Deléham, Nov 18 2008

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*23^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/11*(11 + sqrt(143)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/24*(11 + sqrt(143)). - Peter Bala, Dec 23 2012

MATHEMATICA

lst={}; Do[AppendTo[lst, GegenbauerC[n, 1, 12]], {n, 0, 8^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)

PROG

(Sage)[lucas_number1(n, 24, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

CROSSREFS

Sequence in context: A007109 A158538 A171329 * A059061 A206991 A206933

Adjacent sequences:  A077420 A077421 A077422 * A077424 A077425 A077426

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 04:56 EST 2016. Contains 279034 sequences.