OFFSET
0,2
COMMENTS
a(143+286k)-1 and a(143+286k)+1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
Except for the first term, positive values of x (or y) satisfying x^2 - 24xy + y^2 + 143 = 0. - Colin Barker, Feb 19 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (24,-1).
FORMULA
a(n+1)^2 - 143*b(n)^2 = 1 for n>=0, with the companion sequence b(n)=A077423(n).
a(n) = 24*a(n-1) - a(n-2) for n>0, a(-1) := 12, a(0)=1.
a(n) = T(n, 12)= (S(n, 24)-S(n-2, 24))/2 = S(n, 24)-11*S(n-1, 24) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 24)=A077423(n).
a(n) = (ap^n + am^n)/2, with ap := 12+sqrt(143) and am := 12-sqrt(143).
a(n) = sum( ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*12)^(n-2*k), k=0..floor(n/2) ) for n>=1.
a(n+1) = sqrt(1 + 143*A077423(n)^2) for n>=0.
G.f.: (1-12*x)/(1-24*x+x^2).
MATHEMATICA
CoefficientList[Series[(1 - 12 x)/(1 - 24 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *)
LinearRecurrence[{24, -1}, {1, 12}, 20] (* Harvey P. Dale, Jun 15 2024 *)
PROG
(Sage) [lucas_number2(n, 24, 1)/2 for n in range(20)] # Zerinvary Lajos, Jun 26 2008
(PARI) Vec((1-12*x)/(1-24*x+x^2) + O(x^100)) \\ Colin Barker, Feb 19 2014
(Magma) I:=[1, 12]; [n le 2 select I[n] else 24*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved