login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090732 a(n) = 24a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 24. 2
2, 24, 574, 13752, 329474, 7893624, 189117502, 4530926424, 108553116674, 2600743873752, 62309299853374, 1492822452607224, 35765429562720002, 856877487052672824, 20529294259701427774, 491846184745781593752 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..723

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for linear recurrences with constant coefficients, signature (24,-1).

FORMULA

a(n) = p^n + q^n, where p = 12 + sqrt(143) and q = 12 - sqrt(143). - Tanya Khovanova, Feb 06 2007

G.f.: (2-24*x)/(1-24*x+x^2). - Philippe Deléham, Nov 02 2008

a(n)=2*A077424(n). - R. J. Mathar, Sep 27 2014

MATHEMATICA

a[0] = 2; a[1] = 24; a[n_] := 24a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)

LinearRecurrence[{24, -1}, {2, 24}, 30] (* Harvey P. Dale, Sep 19 2011 *)

PROG

(Sage) [lucas_number2(n, 24, 1) for n in xrange(0, 20)] # Zerinvary Lajos, Jun 26 2008

(PARI) a(n)=([0, 1; -1, 24]^n*[2; 24])[1, 1] \\ Charles R Greathouse IV, Feb 07 2017

CROSSREFS

Cf. A056949, A077424.

Sequence in context: A012113 A156525 A170904 * A014298 A280794 A090316

Adjacent sequences:  A090729 A090730 A090731 * A090733 A090734 A090735

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:08 EST 2017. Contains 294853 sequences.