login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170904 Sequence obtained by a formal reading of Riordan's Eq. (30a), p. 206. 2
1, 0, 0, 2, 24, 572, 21280, 1074390, 70299264, 5792903144, 587159944704, 71822748886440, 10435273503677440, 1776780701352504408, 350461958856515690496, 79284041282799128098778, 20392765404792755583221760, 5917934230798152486136427600, 1924427226324694427836833857536 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

See the comments in A000186 for further discussion.

Neven Juric alerted me to the fact that Riordan's formula is misleading.

It is not error of Riordan, since, according to the rook theory, he considered A000179(1) as -1. [From Vladimir Shevelev, Apr 02 2010]

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 206, 209.

LINKS

Table of n, a(n) for n=0..18.

FORMULA

One can enumerate 3 X n Latin rectangles by the formula A000186(2n)=a(2n) and A000186(2n+1)=a(2n+1)-A001700(n)*A000166(n)*A000166(n+1). - Vladimir Shevelev, Apr 04 2010

a(2n)=A000186(2n), a(2n+1)=A000186(2n+1)+A001700(n)*A000166(n)*A000166(n+1). [From Vladimir Shevelev, Apr 02 2010]

MAPLE

# A000166

unprotect(D);

D := proc(n) option remember; if n<=1 then 1-n else (n-1)*(D(n-1)+D(n-2)); fi; end;

[seq(D(n), n=0..30)];

# A000179

U := proc(n) if n<=1 then 1-n else add ((-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k), k=0..n); fi; end;

[seq(U(n), n=0..30)];

# bad A000186 (A170904)

Kbad:=proc(n) local k; global D, U; add( binomial(n, k)*D(n-k)*D(k)*U(n-2*k), k=0..floor(n/2) ); end;

[seq(Kbad(n), n=0..30)];

CROSSREFS

Sequence in context: A210905 A012113 A156525 * A090732 A014298 A280794

Adjacent sequences:  A170901 A170902 A170903 * A170905 A170906 A170907

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 21 2010

EXTENSIONS

Edited by N. J. A. Sloane, Apr 04 2010 following a suggestion from Vladimir Shevelev.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 04:05 EST 2017. Contains 294959 sequences.