login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090729 a(n) = 21a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 21. 2
2, 21, 439, 9198, 192719, 4037901, 84603202, 1772629341, 37140612959, 778180242798, 16304644485799, 341619353958981, 7157701788652802, 149970118207749861, 3142214780574094279, 65836540273848229998 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A Chebyshev T-sequence with Diophantine property.

a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 437*b^2 =+4 with companion sequence b(n)=A092499(n), n>=0.

REFERENCES

O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..755

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (21,-1).

FORMULA

a(n) = S(n, 21) - S(n-2, 21) = 2*T(n, 21/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 21)=A092499(n+1). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.

a(n) = ap^n + am^n, with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.

G.f.: (2-21*x)/(1-21*x+x^2).

MATHEMATICA

a[0] = 2; a[1] = 21; a[n_] := 21a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)

PROG

(Sage) [lucas_number2(n, 21, 1) for n in xrange(0, 20)] # Zerinvary Lajos, Jun 27 2008

CROSSREFS

Cf. A085985.

a(n)=sqrt(4 + 437*A092499(n)^2), n>=1, (Pell equation d=437, +4).

Cf. A077428, A078355 (Pell +4 equations).

Sequence in context: A245686 A091315 A087546 * A090310 A024232 A192666

Adjacent sequences:  A090726 A090727 A090728 * A090730 A090731 A090732

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

EXTENSIONS

Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 05:01 EST 2017. Contains 294988 sequences.