login
A077422
Chebyshev sequence T(n,11) with Diophantine property.
10
1, 11, 241, 5291, 116161, 2550251, 55989361, 1229215691, 26986755841, 592479412811, 13007560326001, 285573847759211, 6269617090376641, 137646002140526891, 3021942430001214961, 66345087457886202251, 1456569981643495234561, 31978194508699008958091
OFFSET
0,2
COMMENTS
Numbers n such that 30*(n^2-1) is square. - Vincenzo Librandi, Aug 08 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 22xy + y^2 + 120 = 0. - Colin Barker, Feb 19 2014
FORMULA
a(n+1)^2 - 30*(2*b(n))^2 = 1, n>=0, with the companion sequence b(n)=A077421(n).
a(n) = 22*a(n-1) - a(n-2), a(-1) := 11, a(0)=1.
a(n) = T(n, 11) = (S(n, 22)-S(n-2, 22))/2 = S(n, 22)-11*S(n-1, 22) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 22)=A077421(n).
a(n) = (ap^n + am^n)/2 with ap := 11+2*sqrt(30) and am := 11-2*sqrt(30).
a(n) = sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*11)^(n-2*k), k=0..floor(n/2)), n>=1.
a(n+1) = sqrt(1 + 30*(2*A077421(n))^2), n>=0.
a(n) = Cosh[2n*ArcSinh[Sqrt[5]]] - Herbert Kociemba, Apr 24 2008
G.f.: (1-11*x)/(1-22*x+x^2). - Philippe Deléham, Nov 17 2008
MATHEMATICA
Table[Cos[n*ArcCos[11]] // Round, {n, 0, 15}] (* Jean-François Alcover, Dec 19 2013 *)
LinearRecurrence[{22, -1}, {1, 11}, 20] (* Harvey P. Dale, Jul 30 2022 *)
PROG
(Sage) [lucas_number2(n, 22, 1)/2 for n in range(0, 20)] # Zerinvary Lajos, Jun 26 2008
(Magma) [n: n in [1..10000000] |IsSquare(30*(n^2-1))] // Vincenzo Librandi, Aug 08 2010
(PARI) Vec((1-11*x)/(1-22*x+x^2) + O(x^100)) \\ Colin Barker, Jun 15 2015
CROSSREFS
Cf. A090730.
Sequence in context: A264465 A090921 A089328 * A361143 A377451 A267642
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved