login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077421 Chebyshev sequence U(n,11)=S(n,22) with Diophantine property. 28
1, 22, 483, 10604, 232805, 5111106, 112211527, 2463542488, 54085723209, 1187422368110, 26069206375211, 572335117886532, 12565303387128493, 275864339398940314, 6056450163389558415, 132966039255171344816 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

b(n)^2 - 30*(2*a(n))^2 = 1 with the companion sequence b(n)=A077422(n+1).

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 22's along the main diagonal, and i's along the subdiagonal and the superdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,21}. - Milan Janjic, Jan 25 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..700

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (22,-1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = 22*a(n-1) - a(n-1), a(-1)=0, a(0)=1.

a(n) = S(n, 22) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310.

a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap := 11+2*sqrt(30) and am := 11-2*sqrt(30).

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*22^(n-2*k).

a(n) = sqrt((A077422(n+1)^2-1)/30)/2.

G.f.: 1/(1-22*x+x^2). - Philippe Deléham, Nov 18 2008

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*21^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/5*(5 + sqrt(30)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/11*(5 + sqrt(30)). - Peter Bala, Dec 23 2012

MAPLE

seq( simplify(ChebyshevU(n, 11)), n=0..20); # G. C. Greubel, Dec 23 2019

MATHEMATICA

Table[GegenbauerC[n, 1, 11], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)

CoefficientList[Series[1/(1-22x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)

ChebyshevU[Range[21] -1, 11] (* G. C. Greubel, Dec 23 2019 *)

PROG

(Sage) [lucas_number1(n, 22, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008

(Sage) [chebyshev_U(n, 11) for n in (0..20)] # G. C. Greubel, Dec 23 2019

(MAGMA) I:=[1, 22]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012

(PARI) vector( 21, n, polchebyshev(n-1, 2, 11) ) \\ G. C. Greubel, Dec 23 2019

(GAP) m:=11;; a:=[1, 2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019

CROSSREFS

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), this sequence (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).

Cf. A323182.

Sequence in context: A261135 A158535 A171327 * A207491 A207888 A208111

Adjacent sequences:  A077418 A077419 A077420 * A077422 A077423 A077424

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 18:22 EST 2020. Contains 338683 sequences. (Running on oeis4.)