login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097311 Chebyshev polynomials of the second kind, U(n,x), evaluated at x=14. 2
0, 1, 28, 783, 21896, 612305, 17122644, 478821727, 13389885712, 374437978209, 10470873504140, 292810020137711, 8188209690351768, 228977061309711793, 6403169506981578436, 179059769134174484415, 5007270366249903985184 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

COMMENTS

b(n)^2 - 195*a(n)^2 = +1 with b(n):=A097310(n) gives all nonnegative integer solutions of this Pell equation.

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 28's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). [John M. Campbell, Jul 08 2011]

For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,27}. - Milan Janjic, Jan 26 2015

LINKS

Indranil Ghosh, Table of n, a(n) for n = -1..689

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (28, -1)

FORMULA

a(n) = S(n, 28) = U(n, 14), n>=-1, with Chebyshev polynomials of the second kind. See A049310 for the triangle of S(n, x) coefficients. S(-1, x) := 0 =: U(-1, x).

G.f.: 1/(1-28*x+x^2).

a(n) = ((14+sqrt(195))^(n+1) - (14-sqrt(195))^(n+1))/(2*sqrt(195)), (Binet form).

a(n) = 28*a(n-1)-a(n-2); a(0)=1, a(1)=28; a(-1)=0. - Zerinvary Lajos, Apr 29 2009

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*27^k. - Philippe Deléham, Feb 10 2012

With an offset of 0, product {n >= 1} (1 + 1/a(n)) = 1/13*(13 + sqrt(195)). - Peter Bala, Dec 23 2012

Product {n >= 2} (1 - 1/a(n)) = 1/28*(13 + sqrt(195)). - Peter Bala, Dec 23 2012

a(n) = sqrt((A097310(n)^2 - 1)/195).

MATHEMATICA

lst={}; Do[AppendTo[lst, GegenbauerC[n, 1, 14]], {n, 0, 8^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *]

LinearRecurrence[{28, -1}, {0, 1}, 17] (* Ray Chandler, Aug 12 2015 *)

PROG

(Sage) [lucas_number1(n, 28, 1) for n in xrange(0, 20)] # Zerinvary Lajos, Jun 25 2008

CROSSREFS

Cf. A049310, A097310.

Sequence in context: A158545 A291997 A171333 * A223495 A209228 A208505

Adjacent sequences:  A097308 A097309 A097310 * A097312 A097313 A097314

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 13:09 EST 2017. Contains 295127 sequences.