login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097310 Chebyshev T-polynomials T(n,14) with Diophantine property. 5
1, 14, 391, 10934, 305761, 8550374, 239104711, 6686381534, 186979578241, 5228741809214, 146217791079751, 4088869408423814, 114342125644787041, 3197490648645613334, 89415396036432386311, 2500433598371461203374, 69922725358364481308161, 1955335876435834015425134 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)^2 - 195 b(n)^2 = +1 with b(n):=A097311(n) gives all nonnegative solutions of this Pell equation.

a(195+390k)-1 and a(195+390k)+1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006

Except for the first term, positive values of x (or y) satisfying x^2 - 28xy + y^2 + 195 = 0. - Colin Barker, Feb 23 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..700

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (28,-1).

FORMULA

a(n)=28*a(n-1) - a(n-2), a(-1):= 14, a(0)=1.

a(n)= T(n, 14)= (S(n, 28)-S(n-2, 28))/2 = S(n, 28)-14*S(n-1, 28) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 28)=A097311(n).

a(n)= (ap^n + am^n)/2 with ap := 14+sqrt(195) and am := 14-sqrt(195).

a(n)= sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*14)^(n-2*k), k=0..floor(n/2)), n>=1.

G.f.: (1-14*x)/(1-28*x+x^2).

a(n)=sqrt(1 + 195*A097311(n)^2), n>=0.

MATHEMATICA

LinearRecurrence[{28, -1}, {1, 14}, 20] (* Harvey P. Dale, Jan 29 2014 *)

CoefficientList[Series[(1 - 14 x)/(1 - 28 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 24 2014 *)

PROG

(Sage) [lucas_number2(n, 28, 1)/2 for n in range(0, 16)] - Zerinvary Lajos, Jun 27 2008

(PARI) Vec((1-14*x)/(1-28*x+x^2) + O(x^100)) \\ Colin Barker, Feb 23 2014

CROSSREFS

Cf. A090249, A097311.

Sequence in context: A000473 A233094 A211421 * A223003 A228185 A041367

Adjacent sequences:  A097307 A097308 A097309 * A097311 A097312 A097313

KEYWORD

nonn,easy,changed

AUTHOR

Wolfdieter Lang, Aug 31 2004

EXTENSIONS

More terms from Colin Barker, Feb 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:18 EST 2019. Contains 329914 sequences. (Running on oeis4.)