This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320670 G.f.: 1 / [ Sum_{n>=0} (-1)^n * (2*n+1)*(9*n+1) * x^(n*(n+1)/2) ]. 2
 1, 30, 900, 26905, 804300, 24043500, 718749221, 21486074010, 642298264200, 19200672023385, 573979141313067, 17158360616809020, 512926895536596641, 15333283058934704460, 458368573399636228200, 13702332910236820263571, 409613437916178164869149, 12244861486043905536773460, 366044223488302308042741521, 10942416433364118043444939230 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) ~ c*d^n, where d = 29.893700627442917002752194355271816210615519227857086... and c = 1.0071619287873131103030753829058024570785462927254481177... such that Sum_{n>=0} (-1)^n * (2*n+1)*(9*n+1) / d^(n*(n+1)/2) = 0 and c = 2/[Sum_{n>=1} (-1)^(n-1) * n*(n+1)*(2*n+1)*(9*n+1) / d^(n*(n+1)/2)]. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 EXAMPLE G.f.: A(x) = 1 + 30*x + 900*x^2 + 26905*x^3 + 804300*x^4 + 24043500*x^5 + 718749221*x^6 + 21486074010*x^7 + 642298264200*x^8 + 19200672023385*x^9 + ... such that 1/A(x) = 1 - 30*x + 95*x^3 - 196*x^6 + 333*x^10 - 506*x^15 + 715*x^21 - 960*x^28 + 1241*x^36 - 1558*x^45 + 1911*x^55 - 2300*x^66 + ... + (-1)^n * (2*n+1)*(9*n+1) * x^(n*(n+1)/2) + ... Note that the nonzero coefficients of 1/A(x) can be generated by (1 - 27*x + 8*x^2)/(1 + x)^3 = 1 - 30*x + 95*x^2 - 196*x^3 + 333*x^4 + ... RELATED SERIES. The cube root of the g.f. is an integer series: A(x)^(1/3) = 1 + 10*x + 200*x^2 + 4635*x^3 + 115400*x^4 + 2989000*x^5 + 79413182*x^6 + 2147670780*x^7 + 58847999800*x^8 + 1628799414030*x^9 + ... + A320671(n)*x^n + ... PROG (PARI) {a(n) = my(A = 1/sum(m=0, sqrtint(2*n+1), (-1)^m * (2*m+1)*(9*m+1) * x^(m*(m+1)/2) +x*O(x^n))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A320671. Sequence in context: A097313 A056389 A056379 * A171304 A009974 A041421 Adjacent sequences:  A320667 A320668 A320669 * A320671 A320672 A320673 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 07:47 EST 2019. Contains 329914 sequences. (Running on oeis4.)