login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286153 Square array read by descending antidiagonals A(1,1), A(1,2), A(2,1), ...: If n > k, A(n,k) = T(n XOR k, k), and otherwise A(n,k) = T(n, n XOR k), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987). 5
2, 11, 13, 7, 5, 8, 22, 8, 7, 26, 16, 38, 9, 42, 19, 37, 47, 58, 62, 52, 43, 29, 23, 48, 14, 51, 25, 34, 56, 30, 39, 19, 16, 41, 33, 64, 46, 80, 31, 25, 20, 23, 32, 88, 53, 79, 93, 108, 32, 41, 39, 31, 116, 102, 89, 67, 57, 94, 140, 33, 27, 30, 148, 101, 63, 76, 106, 68, 81, 157, 176, 34, 29, 184, 166, 87, 75, 118, 92, 138, 69, 175, 158, 216, 35, 224, 165, 185, 74, 150, 103 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of array

FORMULA

A(n,k) = A286151(n,k), for n >= 1, k >= 1.

If n > k, A(n,k) = T(A003987(n,k),k), otherwise A(n,k) = T(n,A003987(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).

EXAMPLE

The top left 1 .. 12 x 1 .. 12 corner of the array:

    2,  11,   7,  22,  16,  37,  29,  56,  46,  79,  67, 106

   13,   5,   8,  38,  47,  23,  30,  80,  93,  57,  68, 138

    8,   7,   9,  58,  48,  39,  31, 108,  94,  81,  69, 174

   26,  42,  62,  14,  19,  25,  32, 140, 157, 175, 194,  82

   19,  52,  51,  16,  20,  41,  33, 176, 158, 215, 195, 110

   43,  25,  41,  23,  39,  27,  34, 216, 237, 177, 196, 142

   34,  33,  32,  31,  30,  29,  35, 260, 238, 217, 197, 178

   64,  88, 116, 148, 184, 224, 268,  44,  53,  63,  74,  86

   53, 102, 101, 166, 165, 246, 245,  46,  54,  87,  75, 114

   89,  63,  87, 185, 225, 183, 223,  57,  81,  65,  76, 146

   76,  75,  74, 205, 204, 203, 202,  69,  68,  67,  77, 182

  118, 150, 186,  86, 114, 146, 182,  82, 110, 142, 178,  90

MATHEMATICA

T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=If[n>k, T[BitXor[n, k], k], T[n, BitXor[n, k]]]; Table[A[k, n - k + 1], {n, 20}, {k, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)

PROG

(Scheme) (define (A286153 n) (A286151bi (A002260 n) (A004736 n))) ;; For A286151bi see A286151.

(Python)

def T(a, b): return ((a + b)**2 + 3*a + b)/2

def A(n, k): return T(n^k, k) if n>k else T(n, n^k)

for n in range(1, 21): print [A(k, n - k + 1) for k in range(1, n + 1)] # Indranil Ghosh, May 21 2017

CROSSREFS

Array A286151 without its topmost row and leftmost column.

Cf. A003987, A091255, A286155.

Sequence in context: A037091 A289675 A127303 * A068972 A116437 A048867

Adjacent sequences:  A286150 A286151 A286152 * A286154 A286155 A286156

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, May 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 23:02 EDT 2020. Contains 336300 sequences. (Running on oeis4.)