login
A286152
Compound filter: a(n) = T(A051953(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
6
0, 2, 2, 12, 2, 40, 2, 59, 18, 61, 2, 179, 2, 86, 73, 261, 2, 265, 2, 265, 100, 148, 2, 757, 33, 185, 129, 367, 2, 1297, 2, 1097, 166, 271, 131, 1735, 2, 320, 205, 1105, 2, 1741, 2, 619, 517, 430, 2, 3113, 52, 850, 295, 769, 2, 1747, 205, 1517, 346, 625, 2, 5297, 2, 698, 730, 4497, 248, 2821, 2, 1117, 460, 2821, 2, 7069, 2, 941, 1070, 1315, 248, 3457, 2, 4513
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n)).
MATHEMATICA
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {n - EulerPhi@ n, Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1]}, {n, 80}] (* Michael De Vlieger, May 04 2017 *)
PROG
(PARI)
A051953(n) = (n - eulerphi(n));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286152(n) = (2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n))/2;
for(n=1, 10000, write("b286152.txt", n, " ", A286152(n)));
(Scheme) (define (A286152 n) (* (/ 1 2) (+ (expt (+ (A051953 n) (A046523 n)) 2) (- (A051953 n)) (- (* 3 (A046523 n))) 2)))
(Python)
from sympy import factorint, totient
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(n - totient(n), a046523(n)) # Indranil Ghosh, May 05 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2017
STATUS
approved