login
A286154
Compound filter: a(n) = T(A055396(n), A000010(n)), where T(n,k) is sequence A000027 used as a pairing function.
5
0, 1, 5, 2, 18, 2, 40, 7, 23, 7, 96, 7, 142, 16, 38, 29, 238, 16, 308, 29, 80, 46, 444, 29, 234, 67, 173, 67, 676, 29, 791, 121, 212, 121, 328, 67, 1093, 154, 302, 121, 1339, 67, 1499, 191, 302, 232, 1785, 121, 994, 191, 530, 277, 2227, 154, 864, 277, 668, 379, 2718, 121, 2944, 436, 668, 497, 1228, 191, 3505, 497, 992, 277, 3936, 277, 4207, 631, 822, 631
OFFSET
1,3
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n)).
MATHEMATICA
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {If[n == 1, 0, PrimePi[ FactorInteger[n][[1, 1]] ]], EulerPhi@ n}, {n, 76}] (* Michael De Vlieger, May 04 2017 *)
PROG
(PARI)
A000010(n) = eulerphi(n);
A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015
A286154(n) = (2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n))/2;
for(n=1, 10000, write("b286154.txt", n, " ", A286154(n)));
(Scheme) (define (A286154 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A000010 n)) 2) (- (A055396 n)) (- (* 3 (A000010 n))) 2)))
(Python)
from sympy import primepi, isprime, primefactors, totient
def a049084(n): return primepi(n)*(1*isprime(n))
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a(n): return T(a055396(n), totient(n)) # Indranil Ghosh, May 05 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2017
STATUS
approved