login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286150 Square array read by antidiagonals: A(n,k) = T(n XOR k, min(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987). 6
0, 2, 2, 5, 1, 5, 9, 13, 13, 9, 14, 8, 3, 8, 14, 20, 26, 7, 7, 26, 20, 27, 19, 42, 6, 42, 19, 27, 35, 43, 52, 62, 62, 52, 43, 35, 44, 34, 25, 51, 10, 51, 25, 34, 44, 54, 64, 33, 41, 16, 16, 41, 33, 64, 54, 65, 53, 88, 32, 23, 15, 23, 32, 88, 53, 65, 77, 89, 102, 116, 31, 39, 39, 31, 116, 102, 89, 77, 90, 76, 63, 101, 148, 30, 21, 30, 148, 101, 63, 76, 90 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The array is read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10584; the first 145 antidiagonals of array

MathWorld, Pairing Function

FORMULA

A(n,k) = T(A003987(n,k), min(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, that is, as a pairing function from [0, 1, 2, 3, ...] x [0, 1, 2, 3, ...] to [0, 1, 2, 3, ...].

EXAMPLE

The top left 0 .. 12 x 0 .. 12 corner of the array:

   0,   2,   5,   9,  14,  20,  27,  35,  44,  54,  65,  77,  90

   2,   1,  13,   8,  26,  19,  43,  34,  64,  53,  89,  76, 118

   5,  13,   3,   7,  42,  52,  25,  33,  88, 102,  63,  75, 150

   9,   8,   7,   6,  62,  51,  41,  32, 116, 101,  87,  74, 186

  14,  26,  42,  62,  10,  16,  23,  31, 148, 166, 185, 205,  86

  20,  19,  52,  51,  16,  15,  39,  30, 184, 165, 225, 204, 114

  27,  43,  25,  41,  23,  39,  21,  29, 224, 246, 183, 203, 146

  35,  34,  33,  32,  31,  30,  29,  28, 268, 245, 223, 202, 182

  44,  64,  88, 116, 148, 184, 224, 268,  36,  46,  57,  69,  82

  54,  53, 102, 101, 166, 165, 246, 245,  46,  45,  81,  68, 110

  65,  89,  63,  87, 185, 225, 183, 223,  57,  81,  55,  67, 142

  77,  76,  75,  74, 205, 204, 203, 202,  69,  68,  67,  66, 178

  90, 118, 150, 186,  86, 114, 146, 182,  82, 110, 142, 178,  78

MATHEMATICA

T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[BitXor[n, k], Min[n,  k]]; Table[A[k, n - k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)

PROG

(Scheme)

(define (A286150 n) (A286150bi (A002262 n) (A025581 n)))

(define (A286150bi row col) (let ((a (A003987bi row col)) (b (min col row))) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Where A003987bi implements bitwise-xor (A003987).

(Python)

def T(a, b): return ((a + b)**2 + 3*a + b)/2

def A(n, k): return T(n^k, min(n, k))

for n in xrange(0, 21): print [A(k, n - k) for k in xrange(0, n + 1)] # Indranil Ghosh, May 21 2017

CROSSREFS

Cf. A000096 (row 0 & column 0), A000217 (main diagonal).

Cf. A003987, A001477, A286108, A286109, A286145, A286147, A286151.

Sequence in context: A079301 A079300 A128932 * A071950 A274847 A165922

Adjacent sequences:  A286147 A286148 A286149 * A286151 A286152 A286153

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, May 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 22:17 EDT 2019. Contains 324200 sequences. (Running on oeis4.)