login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286147 Square array read by antidiagonals: A(n,k) = T(n XOR k, n), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987) 6
0, 2, 4, 5, 1, 12, 9, 13, 18, 24, 14, 8, 3, 17, 40, 20, 26, 7, 11, 50, 60, 27, 19, 42, 6, 61, 49, 84, 35, 43, 52, 62, 73, 85, 98, 112, 44, 34, 25, 51, 10, 72, 59, 97, 144, 54, 64, 33, 41, 16, 22, 71, 83, 162, 180, 65, 53, 88, 32, 23, 15, 38, 70, 181, 161, 220, 77, 89, 102, 116, 31, 39, 48, 58, 201, 221, 242, 264, 90, 76, 63, 101, 148, 30, 21, 47, 222, 200, 179, 241, 312 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The array is read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10584; the first 145 antidiagonals of array

MathWorld, Pairing Function

FORMULA

A(n,k) = T(A003987(n,k), n), where T(n,k) is sequence A001477 considered as a two-dimensional table, that is, as a pairing function from [0, 1, 2, 3, ...] x [0, 1, 2, 3, ...] to [0, 1, 2, 3, ...].

EXAMPLE

The top left 0 .. 12 x 0 .. 12 corner of the array:

    0,   2,   5,   9,  14,  20,  27,  35,  44,  54,  65,  77,  90

    4,   1,  13,   8,  26,  19,  43,  34,  64,  53,  89,  76, 118

   12,  18,   3,   7,  42,  52,  25,  33,  88, 102,  63,  75, 150

   24,  17,  11,   6,  62,  51,  41,  32, 116, 101,  87,  74, 186

   40,  50,  61,  73,  10,  16,  23,  31, 148, 166, 185, 205,  86

   60,  49,  85,  72,  22,  15,  39,  30, 184, 165, 225, 204, 114

   84,  98,  59,  71,  38,  48,  21,  29, 224, 246, 183, 203, 146

  112,  97,  83,  70,  58,  47,  37,  28, 268, 245, 223, 202, 182

  144, 162, 181, 201, 222, 244, 267, 291,  36,  46,  57,  69,  82

  180, 161, 221, 200, 266, 243, 315, 290,  56,  45,  81,  68, 110

  220, 242, 179, 199, 314, 340, 265, 289,  80,  94,  55,  67, 142

  264, 241, 219, 198, 366, 339, 313, 288, 108,  93,  79,  66, 178

  312, 338, 365, 393, 218, 240, 263, 287, 140, 158, 177, 197,  78

MATHEMATICA

T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[BitXor[n, k], k]; Table[A[n - k, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)

PROG

(Scheme)

(define (A286147 n) (A286147bi (A002262 n) (A025581 n)))

(define (A286147bi row col) (let ((a (A003987bi row col)) (b row)) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Where A003987bi implements bitwise-xor (A003987).

(Python)

def T(a, b): return ((a + b)**2 + 3*a + b)/2

def A(n, k): return T(n^k, k)

for n in xrange(0, 21): print [A(n - k, k) for k in xrange(0, n + 1)] # Indranil Ghosh, May 21 2017

CROSSREFS

Transpose: A286145.

Cf. A000096 (row 0), A046092 (column 0), A000217 (main diagonal).

Cf. A003987, A001477, A286108, A286109, A286150, A286151.

Sequence in context: A274316 A075884 A030750 * A059215 A125142 A234350

Adjacent sequences:  A286144 A286145 A286146 * A286148 A286149 A286150

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, May 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 06:46 EDT 2019. Contains 324145 sequences. (Running on oeis4.)