login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286145 Square array read by antidiagonals: A(n,k) = T(n XOR k, k), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987). 6
0, 4, 2, 12, 1, 5, 24, 18, 13, 9, 40, 17, 3, 8, 14, 60, 50, 11, 7, 26, 20, 84, 49, 61, 6, 42, 19, 27, 112, 98, 85, 73, 62, 52, 43, 35, 144, 97, 59, 72, 10, 51, 25, 34, 44, 180, 162, 83, 71, 22, 16, 41, 33, 64, 54, 220, 161, 181, 70, 38, 15, 23, 32, 88, 53, 65, 264, 242, 221, 201, 58, 48, 39, 31, 116, 102, 89, 77, 312, 241, 179, 200, 222, 47, 21, 30, 148, 101, 63, 76, 90 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The array is read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10584; the first 145 antidiagonals of array

MathWorld, Pairing Function

FORMULA

A(n,k) = T(A003987(n,k), k), where T(n,k) is sequence A001477 considered as a two-dimensional table, that is, as a pairing function from [0, 1, 2, 3, ...] x [0, 1, 2, 3, ...] to [0, 1, 2, 3, ...].

EXAMPLE

The top left 0 .. 12 x 0 .. 12 corner of the array:

   0,   4,  12,  24,  40,  60,  84, 112, 144, 180, 220, 264, 312

   2,   1,  18,  17,  50,  49,  98,  97, 162, 161, 242, 241, 338

   5,  13,   3,  11,  61,  85,  59,  83, 181, 221, 179, 219, 365

   9,   8,   7,   6,  73,  72,  71,  70, 201, 200, 199, 198, 393

  14,  26,  42,  62,  10,  22,  38,  58, 222, 266, 314, 366, 218

  20,  19,  52,  51,  16,  15,  48,  47, 244, 243, 340, 339, 240

  27,  43,  25,  41,  23,  39,  21,  37, 267, 315, 265, 313, 263

  35,  34,  33,  32,  31,  30,  29,  28, 291, 290, 289, 288, 287

  44,  64,  88, 116, 148, 184, 224, 268,  36,  56,  80, 108, 140

  54,  53, 102, 101, 166, 165, 246, 245,  46,  45,  94,  93, 158

  65,  89,  63,  87, 185, 225, 183, 223,  57,  81,  55,  79, 177

  77,  76,  75,  74, 205, 204, 203, 202,  69,  68,  67,  66, 197

  90, 118, 150, 186,  86, 114, 146, 182,  82, 110, 142, 178,  78

MATHEMATICA

T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[BitXor[n, k], k]; Table[A[k, n - k ], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 21 2017 *)

PROG

(Scheme)

(define (A286145 n) (A286145bi (A002262 n) (A025581 n)))

(define (A286145bi row col) (let ((a (A003987bi row col)) (b col)) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Where A003987bi implements bitwise-xor (A003987).

(Python)

def T(a, b): return ((a + b)**2 + 3*a + b)/2

def A(n, k): return T(n^k, k)

for n in xrange(0, 21): print [A(k, n - k) for k in xrange(0, n + 1)] # Indranil Ghosh, May 21 2017

CROSSREFS

Transpose: A286147.

Cf. A046092 (row 0), A000096 (column 0), A000217 (main diagonal).

Cf. A003987, A001477, A286108, A286109, A286150, A286151.

Sequence in context: A094406 A142706 A092952 * A010318 A188134 A226725

Adjacent sequences:  A286142 A286143 A286144 * A286146 A286147 A286148

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, May 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 21:47 EDT 2019. Contains 324200 sequences. (Running on oeis4.)