login
A286144
Compound filter: a(n) = T(A000010(n), A257993(n)), where T(n,k) is sequence A000027 used as a pairing function.
7
1, 2, 3, 5, 10, 8, 21, 14, 21, 14, 55, 19, 78, 27, 36, 44, 136, 34, 171, 44, 78, 65, 253, 53, 210, 90, 171, 90, 406, 63, 465, 152, 210, 152, 300, 103, 666, 189, 300, 152, 820, 103, 903, 230, 300, 275, 1081, 169, 903, 230, 528, 324, 1378, 208, 820, 324, 666, 434, 1711, 187, 1830, 495, 666, 560, 1176, 251, 2211, 560, 990, 324, 2485, 349, 2628, 702, 820, 702
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A000010(n)+A257993(n))^2) - A000010(n) - 3*A257993(n)).
MATHEMATICA
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {EulerPhi@ n, Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i]}, {n, 74}] (* Michael De Vlieger, May 04 2017 *)
PROG
(PARI)
A000010(n) = eulerphi(n);
A257993(n) = { for(i=1, n, if(n%prime(i), return(i))); }
A286144(n) = (2 + ((A000010(n)+A257993(n))^2) - A000010(n) - 3*A257993(n))/2;
for(n=1, 10000, write("b286144.txt", n, " ", A286144(n)));
(Scheme) (define (A286144 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A257993 n)) 2) (- (A000010 n)) (- (* 3 (A257993 n))) 2)))
(Python)
from sympy import prime, primepi, gcd, totient
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def a053669(n):
x=1
while True:
if gcd(prime(x), n) == 1: return prime(x)
else: x+=1
def a257993(n): return primepi(a053669(n))
def a(n): return T(totient(n), a257993(n)) # Indranil Ghosh, May 05 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2017
STATUS
approved