login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285394
Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 1; a(n) is the number of cells after n iterations.
10
1, 7, 116, 1984, 34112, 587008, 10102784, 173879296, 2992652288, 51506839552, 886489481216, 15257461325824, 262597731418112, 4519596484722688, 77787238586384384, 1338804140460998656, 23042295357073522688, 396583308399342518272, 6825635990847321276416
OFFSET
0,2
COMMENTS
Cell configuration converges to a fractal with dimension 2.590...
FORMULA
a(0) = 1, a(1) = 7, a(2) = 116, a(n) = 20*a(n-1) - 48*a(n-2).
G.f.: (1-13*x+24*x^2)/(1-20*x+48*x^2).
a(n) = (3*(10-2*sqrt(13))^n*(13+sqrt(13)) + (2*(5+sqrt(13)))^n*(91+23*sqrt(13)))/(52*(5+sqrt(13))) for n > 0.
a(n) = (1/2)*[n=0] + (4*sqrt(3))^(n-1)*(2*sqrt(3)*ChebyshevU(n, 5/(2*sqrt(3))) - 3*ChebyshevU(n-1, 5/(2*sqrt(3)))). - G. C. Greubel, Dec 10 2021
MATHEMATICA
{1}~Join~LinearRecurrence[{20, -48}, {7, 116}, 18]
CoefficientList[Series[(1 - 13x + 24x^2)/(1 - 20x + 48x^2), {x, 0, 40}], x] (* Indranil Ghosh, Apr 19 2017 *)
PROG
(Magma) I:=[7, 116]; [n le 2 select I[n] else 20*Self(n-1) - 48*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 10 2021
(Sage) [(1/2)*bool(n==0) + (4*sqrt(3))^(n-1)*(2*sqrt(3)*chebyshev_U(n, 5/(2*sqrt(3))) - 3*chebyshev_U(n-1, 5/(2*sqrt(3)))) for n in (0..30)] # G. C. Greubel, Dec 10 2021
KEYWORD
nonn
AUTHOR
Peter Karpov, Apr 19 2017
STATUS
approved