This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285398 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0; a(n) is the number of cells after n iterations. 4
 1, 19, 452, 10948, 266300, 6484372, 157936172, 3847025764, 93707895260, 2282596837492, 55601016789068, 1354367059315396, 32990588541122684, 803607076375862356, 19574804963320797548, 476816346057854861860, 11614615234500986326556, 282916657894827156657460 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Cell configuration converges to a fractal with dimension 2.906... LINKS Colin Barker, Table of n, a(n) for n = 0..700 Peter Karpov, InvMem, Item 26 Peter Karpov, Illustration of initial terms (n = 1..4) Index entries for linear recurrences with constant coefficients, signature (32,-195,216). FORMULA a(0) = 1, a(1) = 19, a(2) = 452, a(3) = 10948, a(n) = 28*a(n-1) - 195*a(n-2) + 216*a(n-3). G.f.: (1-13*x+39*x^2-27*x^3)/(1-32*x+195*x^2-216*x^3). MATHEMATICA {1}~Join~LinearRecurrence[{32, -195, 216}, {19, 452, 10948}, 17] PROG (PARI) Vec((1 - x)*(1 - 3*x)*(1 - 9*x) / (1 - 32*x + 195*x^2 - 216*x^3) + O(x^20)) \\ Colin Barker, Apr 23 2017 CROSSREFS Cf. A285391, A285392, A285393, A285394, A285395, A285396, A285397, A285399, A285400, A026597, A007482. Sequence in context: A114350 A194730 A012506 * A201798 A284197 A081686 Adjacent sequences:  A285395 A285396 A285397 * A285399 A285400 A285401 KEYWORD nonn,easy,nice AUTHOR Peter Karpov, Apr 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 17:50 EST 2018. Contains 317149 sequences. (Running on oeis4.)