login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285397 Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 3; a(n) is the number of cells after n iterations. 4
1, 26, 646, 15818, 385822, 9401330, 229023958, 5578844858, 135894050926, 3310204057250, 80632220390758, 1964094376340522, 47842741143064894, 1165385872796078546, 28387257791866411894, 691476036231391881242, 16843441238514542846350, 410283940250387099210114 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Cell configuration converges to a fractal with dimension 2.906...

LINKS

Colin Barker, Table of n, a(n) for n = 0..700

Peter Karpov, InvMem, Item 26

Index entries for linear recurrences with constant coefficients, signature (32,-195,216).

FORMULA

a(0) = 1, a(1) = 26, a(2) = 646, a(n) = 28*a(n-1) - 195*a(n-2) + 216*a(n-3).

G.f.: (1-6*x+9*x^2)/(1-32*x+195*x^2-216*x^3).

MATHEMATICA

LinearRecurrence[{32, -195, 216}, {1, 26, 646}, 18]

PROG

(PARI) Vec((1 - 3*x)^2 / (1 - 32*x + 195*x^2 - 216*x^3) + O(x^20)) \\ Colin Barker, Apr 23 2017

CROSSREFS

Cf. A285391, A285392, A285393, A285394, A285395, A285396, A285398, A285399, A285400, A026597, A007482.

Sequence in context: A217636 A249863 A014913 * A106793 A162812 A163177

Adjacent sequences:  A285394 A285395 A285396 * A285398 A285399 A285400

KEYWORD

nonn,easy

AUTHOR

Peter Karpov, Apr 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 11:25 EDT 2017. Contains 288788 sequences.