The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220181 E.g.f.: Sum_{n>=0} (1 - exp(-n*x))^n. 30
 1, 1, 7, 115, 3451, 164731, 11467387, 1096832395, 138027417451, 22111390122811, 4393756903239067, 1060590528331645675, 305686632592587314251, 103695663062502304228891, 40895823706632785802087547, 18554695374154504939196298955, 9596336362873294022956267703851 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to the trivial identity: exp(x) = Sum_{n>=0} (1 - exp(-x))^n. Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n. From Arvind Ayyer, Oct 25 2020: (Start) a(n) is also the number of acyclic orientations with unique sink of the complete bipartite graph K_{n,n+1} a(n) is also the number of toppleable permutations in S_{2n}. A toppleable permutation pi in S_{2n} satisfies pi_i <= n-1+i for 1 <= i <= n+1 and pi_i >= i-n for n+2 <= i <= 2n. (End) Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1 ...], with an apparent period of 6. Cf. A122399. - Peter Bala, Jun 01 2022 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 A. Ayyer, D. Hathcock and P. Tetali, Toppleable Permutations, Excedances and Acyclic Orientations, arXiv:2010.11236 [math.CO], 2020. For the precise definition of a toppleable permutation. FORMULA O.g.f. Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 + n*k*x). E.g.f. A(x) = Sum_{n>=0} (1 - exp(-n*x))^n satisfies the identities: (1) A(x) = Sum_{n>=1} exp(-n*x) * (1 - exp(-n*x))^(n-1). (2) A(x) = 1 + (1/2) * Sum_{n>=1} (1 - exp(-n*x))^(n-1). (3) A(x) = Sum_{n>=1} Sum_{k>=0} (-1)^k * C(n+k-1,k) * exp(-k*(n+k-1)*x). E.g.f. at offset 1, B(x) = Sum_{n>=1} a(n-1)*x^n/n!, satisfies: (1) B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2. (2) B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{k>=2} Sum_{n>=k} (-1)^k * C(n-1,k-1) * exp(-k*n*x)/(k*n), a convergent series for x>0. a(n) = Sum_{k=0..n} (-1)^(n-k) * k^n * k! * Stirling2(n,k). a(n) = Sum_{k=1..n+1} ((k-1)!)^2 * Stirling2(n+1,k)^2 / 2 for n>0 with a(0)=1. a(n) = Sum_{k=0..n} k^n * Sum_{j=0..k} (-1)^(n+k-j) * binomial(k,j) * (k-j)^n. a(n) = A048163(n+1)/2 for n>0. Limit n->infinity (a(n)/n!)^(1/n)/n = 1/(exp(1)*(log(2))^2) = 0.7656928576... - Vaclav Kotesovec, Jun 21 2013 a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 13 2014 EXAMPLE O.g.f.: F(x) = 1 + x + 7*x^2 + 115*x^3 + 3451*x^4 + 164731*x^5 +... where F(x) = 1 + x/(1+x) + 2^2*2!*x^2/((1+2*1*x)*(1+2*2*x)) + 3^3*3!*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 4^4*4!*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) +... ... E.g.f.: A(x) = 1 + x + 7*x^2/2! + 115*x^3/3! + 3451*x^4/4! + 164731*x^5/5! +... where the e.g.f. satisfies the identities: (1) A(x) = 1 + (1-exp(-x)) + (1-exp(-2*x))^2 + (1-exp(-3*x))^3 + (1-exp(-4*x))^4 + (1-exp(-5*x))^5 + (1-exp(-6*x))^6 +... (2) A(x) = exp(-x) + exp(-2*x)*(1-exp(-2*x)) + exp(-3*x)*(1-exp(-3*x))^2 + exp(-4*x)*(1-exp(-4*x))^3 + exp(-5*x)*(1-exp(-5*x))^4 + exp(-6*x)*(1-exp(-6*x))^5 +... (3) 2*A(x) = 2 + (1-exp(-2*x)) + (1-exp(-3*x))^2 + (1-exp(-4*x))^3 + (1-exp(-5*x))^4 + (1-exp(-6*x))^5 + (1-exp(-7*x))^6 +... E.g.f. at offset=1 begins: B(x) = x + x^2/2! + 7*x^3/3! + 115*x^4/4! + 3451*x^5/5! + 164731*x^6/6! +... where B(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2^2 + (1-exp(-3*x))^3/3^2 + (1-exp(-4*x))^4/4^2 + (1-exp(-5*x))^5/5^2 + (1-exp(-6*x))^6/6^2 +... The series B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2 may be rewritten as: B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{n>=2} (n-1)*exp(-2*n*x)/(2*n) - Sum_{n>=3} C(n-1,2)*exp(-3*n*x)/(3*n) + Sum_{n>=4} C(n-1,3)*exp(-4*n*x)/(4*n) -+... MATHEMATICA Flatten[{1, Table[Sum[(-1)^(n-k)*k^n*k!*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jun 21 2013 *) PROG (PARI) {a(n)=polcoeff(sum(m=0, n, m^m*m!*x^m/prod(k=1, m, 1+m*k*x+x*O(x^n))), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k*x+x*O(x^n)))^k), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) /* Formula for this sequence with offset=1: */ {a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k*x+x*O(x^n)))^k/k^2), n)} for(n=1, 21, print1(a(n), ", ")) (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n) = sum(k=0, n, (-1)^(n-k)*k^n*k!*Stirling2(n, k))} for(n=0, 20, print1(a(n), ", ")) (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n) = if(n==0, 1, sum(k=1, n+1, ((k-1)!)^2*Stirling2(n+1, k)^2/2))} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=sum(k=0, n, k^n*sum(j=0, k, (-1)^(n+k-j)*binomial(k, j)*(k-j)^n))} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A136126, A092552, A048163, A220179, A122399, A187755, A203798, A320096, A338040. Sequence in context: A082487 A081798 A063399 * A328813 A178297 A285394 Adjacent sequences: A220178 A220179 A220180 * A220182 A220183 A220184 KEYWORD nonn,nice AUTHOR Paul D. Hanna, Dec 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 07:38 EST 2022. Contains 358691 sequences. (Running on oeis4.)