OFFSET
0,2
COMMENTS
Cell configuration converges to a fractal sponge with dimension 2.590...
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..750
Peter Karpov, InvMem, Item 26
Peter Karpov, Illustration of initial terms (n = 1..4)
Index entries for linear recurrences with constant coefficients, signature (20,-48).
FORMULA
a(0) = 1, a(1) = 20, a(n) = 20*a(n-1) - 48*a(n-2).
G.f.: 1/(1-20*x+48*x^2).
a(n) = ((13 - 5*sqrt(13))*(10 - 2*sqrt(13))^n + (2*(5 + sqrt(13)))^n*(13 + 5*sqrt(13)))/26.
a(n) = (4*sqrt(3))^n * ChebyshevU(n, 5/(2*sqrt(3))). - G. C. Greubel, Dec 11 2021
MATHEMATICA
LinearRecurrence[{20, -48}, {1, 20}, 19]
PROG
(Magma) [n le 2 select (20)^(n-1) else 20*Self(n-1) - 48*Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 11 2021
(Sage) [(4*sqrt(3))^n * chebyshev_U(n, 5/(2*sqrt(3))) for n in (0..30)] # G. C. Greubel, Dec 11 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Karpov, Apr 19 2017
STATUS
approved