OFFSET
0,2
COMMENTS
Cell configuration converges to a fractal with dimension 2.402...
LINKS
Colin Barker, Table of n, a(n) for n = 0..850
Peter Karpov, InvMem, Item 26
Peter Karpov, Illustration of initial terms (n = 1..4)
Index entries for linear recurrences with constant coefficients, signature (14).
FORMULA
a(0) = 1, a(1) = 13, a(n) = 14*a(n-1).
G.f.: (1-x)/(1-14*x).
a(n) = 13 * 14^(n-1) for n>0. - Colin Barker, Apr 23 2017
E.g.f.: (1 + 13*exp(14*x))/14. - G. C. Greubel, Dec 09 2021
MAPLE
MATHEMATICA
{1}~Join~LinearRecurrence[{14}, {13}, 18]
PROG
(PARI) Vec((1-x) / (1-14*x) + O(x^20)) \\ Colin Barker, Apr 23 2017
(Sage) [1]+[13*14^(n-1) for n in (1..40)] # G. C. Greubel, Dec 09 2021
(Magma) [1] cat [13*14^(n-1): n in [1..40]]; // G. C. Greubel, Dec 09 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Karpov, Apr 23 2017
STATUS
approved