login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251585 a(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125). 9
1, 1, 7, 116, 3229, 129000, 6776875, 443200000, 34766465625, 3185000000000, 333992093359375, 39470976000000000, 5192072114658203125, 752537122540000000000, 119176291179656982421875, 20476256583680000000000000, 3793880513498167242431640625, 754086862404270000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..312

FORMULA

Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies:

(1) A(x) = exp( 5*x*A(x) * G(x*A(x))^4 ) / G(x*A(x))^4.

(2) A(x) = F(x*A(x)) where F(x) = exp(5*x*G(x)^4)/G(x)^4 is the e.g.f. of A251575.

(3) a(n) = [x^n/n!] F(x)^(n+1)/(n+1) where F(x) is the e.g.f. of A251575.

E.g.f.: -LambertW(-5*x) * (5 + LambertW(-5*x))^4 / (x*5^5). - Vaclav Kotesovec, Dec 07 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 7*x^2/2! + 116*x^3/3! + 3229*x^4/4! + 129000*x^5/5! + ...

such that A(x) = exp( 5*x*A(x) * G(x*A(x))^4 ) / G(x*A(x))^4

where G(x) = 1 + x*G(x)^5 is the g.f. of A002294:

G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + ...

RELATED SERIES.

Note that A(x) = F(x*A(x)) where F(x) = exp(5*x*G(x)^4)/G(x)^4,

F(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1505*x^4/4! + 51505*x^5/5! + ...

is the e.g.f. of A251575.

MATHEMATICA

Table[5^(n - 3)*(n + 1)^(n - 5)*(16*n^3 + 87*n^2 + 172*n + 125), {n, 0, 50}] (* G. C. Greubel, Nov 13 2017 *)

PROG

(PARI) {a(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n) = local(G=1, A=1); for(i=1, n, G=1+x*G^5 +x*O(x^n));

for(i=1, n, A = exp(5*x*A * subst(G^4, x, x*A) ) / subst(G^4, x, x*A) ); n!*polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

(MAGMA) [5^(n - 3)*(n + 1)^(n - 5)*(16*n^3 + 87*n^2 + 172*n + 125): n in [0..50]]; // G. C. Greubel, Nov 13 2017

CROSSREFS

Cf. A251575, A002294.

Cf. Variants: A251583, A251584, A251586, A251587, A251588, A251589, A251590.

Sequence in context: A220181 A178297 A285394 * A320083 A180203 A070067

Adjacent sequences:  A251582 A251583 A251584 * A251586 A251587 A251588

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 22:08 EDT 2019. Contains 322237 sequences. (Running on oeis4.)