The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251585 a(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125). 9
 1, 1, 7, 116, 3229, 129000, 6776875, 443200000, 34766465625, 3185000000000, 333992093359375, 39470976000000000, 5192072114658203125, 752537122540000000000, 119176291179656982421875, 20476256583680000000000000, 3793880513498167242431640625, 754086862404270000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..312 FORMULA Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies: (1) A(x) = exp( 5*x*A(x) * G(x*A(x))^4 ) / G(x*A(x))^4. (2) A(x) = F(x*A(x)) where F(x) = exp(5*x*G(x)^4)/G(x)^4 is the e.g.f. of A251575. (3) a(n) = [x^n/n!] F(x)^(n+1)/(n+1) where F(x) is the e.g.f. of A251575. E.g.f.: -LambertW(-5*x) * (5 + LambertW(-5*x))^4 / (x*5^5). - Vaclav Kotesovec, Dec 07 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 7*x^2/2! + 116*x^3/3! + 3229*x^4/4! + 129000*x^5/5! + ... such that A(x) = exp( 5*x*A(x) * G(x*A(x))^4 ) / G(x*A(x))^4 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294: G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + ... RELATED SERIES. Note that A(x) = F(x*A(x)) where F(x) = exp(5*x*G(x)^4)/G(x)^4, F(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1505*x^4/4! + 51505*x^5/5! + ... is the e.g.f. of A251575. MATHEMATICA Table[5^(n - 3)*(n + 1)^(n - 5)*(16*n^3 + 87*n^2 + 172*n + 125), {n, 0, 50}] (* G. C. Greubel, Nov 13 2017 *) PROG (PARI) {a(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n) = local(G=1, A=1); for(i=1, n, G=1+x*G^5 +x*O(x^n)); for(i=1, n, A = exp(5*x*A * subst(G^4, x, x*A) ) / subst(G^4, x, x*A) ); n!*polcoeff(A, n)} for(n=0, 20, print1(a(n), ", ")) (Magma) [5^(n - 3)*(n + 1)^(n - 5)*(16*n^3 + 87*n^2 + 172*n + 125): n in [0..50]]; // G. C. Greubel, Nov 13 2017 CROSSREFS Cf. A251575, A002294. Cf. Variants: A251583, A251584, A251586, A251587, A251588, A251589, A251590. Sequence in context: A178297 A285394 A339390 * A320083 A329543 A180203 Adjacent sequences: A251582 A251583 A251584 * A251586 A251587 A251588 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:12 EST 2022. Contains 358585 sequences. (Running on oeis4.)